Dynamics and Control
Release 0.0.1

Carl Sandrock

Dec 29, 2023

Getting Started

1.1

1.2 Python stuff not done in MPR

1.3 The Jupyter notebook cheat sheet

Dynamics

21 Modelling L.
2.2 Time domain simulation

2.3 Linear SyStemso v e e e e .
2.4 First and second order system Dynamics

2.5 Complex system dynamics

2.6 Multivariable system representations

2.7 System identification

2.8 Frequency domain

2.9 Sampledsystems,
Control

3.1 Conventional feedback control

3.2 Laplace domain analysis of control systems

3.3 PID controller design, tuning and troubleshooting

3.4 Frequency domain analysis of control systems

3.5 Advanced control methods

3.6 Discrete control and analysis

3.7 Multivariable control

3.8 Control Practice
Simulation

41 Nodelays
42 Deadtime.
4.3 Nonlinear tank system

44 PlControl.
45 Classes oo i
4.6 Taking off the engine cover

47 Objects
4.8 A discrete controller class

49 Blocksim

4.10 Disturbances

4.11

Temperature Control Lab (TCLab)

Introduction to Sympy and the Jupyter Notebook for engineering calculations

Algebraic equations

CONTENTS

51 FOPDTfit

5.2 TCLab in the frequency domain

6 Search Page

CHAPTER
ONE

GETTING STARTED

1.1 Introduction to Sympy and the Jupyter Notebook for engineering
calculations

Sympy is a computer algebra module for Python. You are looking at the convenient Jupyter Notebook interface. This
notebook aims to show some of the useful features of the Sympy system as well as the notebook interface.

This notebook will use Python as the programming language. This means that most of what you learned in MPR can be
applied in the notebook. The notebook interface provides “cells” where one can input code. To run the code, click on a
cell and press Shift+Enter.

1.1.1 A quick tour

Take a second to go through the tour of the notebook interface by clicking on “Help, User Interface Tour”. Also note that
there is help available for a number of other things under that menu.

Now that you are familiar with the nomenclature, let’s run some code!

Evaluate the cell below to print out a message by clicking inside the cell and then pressing Shift + Enter

: for word in ['Hello', 'World']:

print (word)

Hello
World

1.1.2 Math in text boxes

The text editor supports math in :math:LaTeX" <>'__ notation. You can double-click on a text box to see the codes used

to enter it:
f(a) / L
a) = a
o @+ 2

Double-click on the formula above to see the code that produced it.

http://jupyter.org/

Dynamics and Control, Release 0.0.1

1.1.3 Special symbols in variable names

The notebook supports easy entry of special symbols in variable names. Simply type a backslash with the name of the
symbol, then press tab to have it replaced by the symbol. For example:

Enter \alpha, then press tab. This will be replaced by a

ca =1

1.1.4 SymPy

We need to import the SymPy module to get symbolic math capabilities.

: import sympy

We need to start the pretty-printer to get nicely typeset math

Note that this changes somewhat based on the version of sympy

: sympy.init_printing()

In order to do symbolic calculations, we need to create a symbol

: X = sympy.Symbol ('x")

Sympy allows us to do many mathematical operations that would be tedious by hand. For instance, we can expand a
polynomial:

: polynomial = (2*x + 3)**4

polynomial .expand ()

162* + 962° + 21622 + 2162 + 81

Notice what happened - we defined a new name called “polynomial” and then used the .expand() method to expand the
polynomial. We can see all the methods associated with an object by typing its name and a dot then pressing “tab”.

@

Call up the list of methods for the polynomial variable by entering “.” and pressing tab at the end of the line in the cell
below:

: polynomial

(2 +3)*

To get help about any method, we can type its name and append a ? at the end, then evaluate the cell

Obtain help about the .expand() method by evaluating the cell below:

: polynomial.expand ()

2 Chapter 1. Getting Started

http://docs.sympy.org/latest/index.html

Dynamics and Control, Release 0.0.1

162* + 962° + 21622 + 2162 + 81

It is also possible to obtain help for a function by placing the cursor between the parentheses and pressing Shift+Tab

Of course, we can also factor polynomials:

(x**2 + 2*x + 1) .factor ()

(z+ 1)

1.1.5 Calculus

Sympy knows how to integrate and differentiate

: eq = sympy.tan (sympy.log(x**2 + 1))

: eq.diff (x)

2z (tan2 (log (x2 + 1)) + 1)
2 +1

: polynomial.diff (x) # First derivative

8 (22 +3)°

: polynomial.diff (x, 2) # Second derivative

2
48 (2 + 3)
: polynomial.integrate(x) # indefinite integral - note no constant of integration is.
—added
162°
=+ 242t + 722% + 10827 + 81w
: polynomial.integrate((x, 1, 2)) # Note that integrate takes one argument which is a.

—tuple for the definite integral

6841

5

1.1. Introduction to Sympy and the Jupyter Notebook for engineering calculations 3

[21]:

[22]:

[25]:

Dynamics and Control, Release 0.0.1

1.1.6 Limits

We can evaluate limits using SymPy, even for “interesting” limits where we would need L’'Hopital’s rule

: badeq = (2*sympy.sin(x) — sympy.sin(2*x))/(x — sympy.sin(x))

: badeqg

2sin (z) — sin (2x)
x — sin (z)

:a = sympy.symbols('a')

lim = sympy.limit (badeq, x, a)
lim

—2sin (a) + sin (2a)
a — sin (a)

: lim.subs (sympy.sin(a), 1)

sin (2a) — 2
a—1

1.1.7 Approximation

SymPy has built-in support for taylor series expansion

: nonlinear_expression = sympy.sin(x)

sympy.series (nonlinear_expression, x, 2, 7) # taylor expansion in terms of the x._
—variable, around x=2, first order.

—2)?sin z —2)% cos z —2)*sin x — 2)° cos z —2)%sin
sin (2)+(z — 2) cos (2)— (@ 2)2 @ _(2)6 @) +(2;4 @ +(21)20 @) _(27)20 @ +0 ((x — 27—

To remove the order term use . removeO ()

temp = sympy.series(nonlinear_expression, x, 2, 2)
temp.removeO ()

(z — 2)cos (2) + sin (2)

You will also notice that SymPy’s default behaviour is to retain exact representations of certain numbers:

: number = sympy.sqrt (2) *sympy.pi

number

4 Chapter 1. Getting Started

[27]:

[29] :

Dynamics and Control, Release 0.0.1

V2r

To convert the exact representations above to an approximate floating point representations, use one of these methods.
sympy . N works with complicated expressions containing variables as well. £loat will return a normal Python float

and is useful when interacting with non-sympy programs.
sympy . N (number*x)

4.44288293815837x

: float (number)

4.442882938158366

1.1.8 Solving equations

Sympy can help us solve manipulate equations using the solve function. Like many solving functions, it finds zeros of

a function, so we have to rewrite equalities to be equal to zero,

:nbsphinx-math: begin{align}
2x"2 4+ 2 &=4\2x"2 + 2 - 4 &= Oend{align}"

sympy.plot (x**2 + 1)

<Figure size 640x480 with 1 Axes>

]: <sympy.plotting.plot.Plot at 0x10b531438>

: solutions = sympy.solve (2*x**2 + 2 - 4)

solutions

[_17 H
: solutions[0]
-1

We can also use sympy . Eq to construct equations
: equation = sympy.Eq(2*x**2 + 2, 4)

equation

202 +2 =4

The roots function will give us the multiplicity of the roots as well.

1.1. Introduction to Sympy and the Jupyter Notebook for engineering calculations

https://en.wikipedia.org/wiki/Floating_point

[34]:

[35]:

Dynamics and Control, Release 0.0.1

: sympy.roots (equation)

The results are given as a dictionary. If this is not familiar to you, have a look in the Extra Python notebook.

We can also solve systems of equations by passing a list of equations to solve and asking for a list of variables to solve for

: X, y = sympy.symbols('x, v')

sympy.solve ([x + vy — 2,
x -y - 01, [x, y])

{z:1, y:1}

This even works with symbolic variables in the equations

:a, b, ¢ = sympy.var('a, b, c')

solution = sympy.solve([a*x + b*y - 2,
arx - b*y - cl, [x, Y])

c+2 —c+2
X . .
2 YT

solution

1.2 Python stuff not done in MPR

1.2.1 List comprehensions

This is a common pattern - accumulating into a list:

: inputs = [2, 1, 3, 2, 4, 5, 6]

result [1] # Start with an empty 1list
for i in inputs: # Iterate over an input list
if i < 4: # if some condition holds
result.append (i**2) # Append the result of a calculation
result

(4, 1, 9, 4]

It’'s common enough that Python includes dedicated syntax for this:

: result = [i**2 for i in inputs if i < 4]

result

4, 1, 9, 4]

6 Chapter 1. Getting Started

0_Getting_Started/Extra%20Python.ipynb

Dynamics and Control, Release 0.0.1

1.2.2 Dictionaries

You should be familiar with lists, which are ordered container types.

: 1st = [1, 2, 3]

We can retrieve elements from the list by indexing it

: 1st[1]

1: 2

A dictionary gives us a container like a list, but the indexes can be much more general, not just numbers but strings or
sympy variables (and a whole host of other types)

: dic = {'a': 100, 2: 45, 100: 45}

dic['a']

]: 100

When we solve an equation in sympy, the result is a dictionary

: import sympy

sympy.init_printing()

: X, y = sympy.symbols('x, v')

: solution = sympy.solve([x - vy, 2 + 2*x + vy], [x, v])

: solution

: type (solution)

]: dict

This means we can find the value of one of the answers by indexing.

: solution[x]

Wl o

1.2. Python stuff not done in MPR 7

[12]:

Dynamics and Control, Release 0.0.1

1.2.3 Tuples

You are familiar with lists:

. def f(x):

Ca, Cb, Cc = x

: type (1)

]: list

Tuples are like lists, but they are created with commas:

: type(t)

]: tuple

In some cases it is useful to use parentheses to group tuples (but note that they are not required syntax:

t2 = (lr 2/ 3/ 4)
: type (t2)
]: tuple

It is important to understand that the comma, not the parentheses make tuples:

s only_one = (((((((1)))))))

: type (only_one)

]: int
: only_one = 1,

: type (only_one)

]: tuple

: len(only_one)

Chapter 1. Getting Started

[29]:

Dynamics and Control, Release 0.0.1

The only exception to this rule is that an empty tuple is built with () :

: empty = ()

: type (empty)

]: tuple

: len (empty)

The differences between tuples and lists are that tuples are immutable (they cannot be changed in place)

: l.append(1l)

If we were to run

t.append (1)

We would see

AttributeError Traceback (most recent call last)
<ipython-input-41-c860940312ad> in <module> ()
-———> 1 t.append(1l)

AttributeError: 'tuple' object has no attribute 'append'

Tuple expansion

A very useful and general feature of the assignment operator in Python is that tuples will be expanded and assigned in
matched patterns:

a, b=1, 2

This is quite sophisticated and can handle nested structures and expanded to lists:

t(a, b,), ¢, dl = [(1, 2), 3, 4]

1.2.4 The for loop in Python

This talk is excellent for understanding the way that Python “wants” to use the for loop

1.2. Python stuff not done in MPR 9

https://nedbatchelder.com/text/iter.html

[33]:

Dynamics and Control, Release 0.0.1

zip
Let’s say we’re trying to calculate the credit-weighted average of a student’s marks using loops:

credits = [8, 16, 8, 8, 16]
marks = [75, 60, 60, 75, 45]

One way is to use indexing:

: weightedsum = 0

creditsum = 0

for i in range(len(credits)):
weightedsum += credits[i]*marks[i]
creditsum += credits[i]

avg = weightedsum/creditsum
print (avg)

60.0

But Python supplies a method which allows us to iterate directly over the pairs:

weightedsum = 0

creditsum = 0

for credit, mark in zip(credits, marks):
weightedsum += credit*mark
creditsum += credit

avg = weightedsum/creditsum
print (avg)

60.0

This z ip function returns an iterator which groups its inputs into tuples, suitable for expansion in the for loop. We can
see the effect if we convert to a list:

list (zip(credits, marks))

(8, 75), (16, 60), (8 60), (8, 75), (16, 45)]

These pairs are then assigned out to the arguments in the for loop above

1.2.5 lambda

Some functions expect functions as arguments. For instance, scipy.optimize.fsolve solves equations numeri-
cally:

. def f(x):

return x**2 - 3

import scipy

import scipy.optimize

10 Chapter 1. Getting Started

Dynamics and Control, Release 0.0.1

: scipy.optimize.fsolve(f, 2)

:array([1.732050811)

For very simple functions, 1ambda allows us to construct functions in a more compact way and not give them a name:

: scipy.optimize.fsolve (lambda x: x**2 - 3, 2)

:array ([1.732050811])

The function constructed by lambda works the same as the one constructed by def in most ways. My recommendation is
to use lambda with caution. It is never necessary to use 1ambda. I include this section mostly so that you can understand
what this does if you encounter it in documentation.

1.3 The Jupyter notebook cheat sheet

This document will be available to you during tests and exams

1.3.1 Table of Contents

Numeric

Basic plotting functions
Symbolic manipulation
Equation solving

Matrix math

: import tbcontrol

tbcontrol.expectversion('0.1.2")

1.3.2 Numeric

: import numpy

import scipy

:a = numpy.array([1l, 2, 3])

: t = numpy.linspace (0, 10)

1.3.3 Basic plotting functions

: import matplotlib.pyplot as plt

%matplotlib inline

1.3. The Jupyter notebook cheat sheet

11

Dynamics and Control, Release 0.0.1

: plotfuncs =

: Gec = K_c*((tau*s + 1) /
=5

[plt.plot,
plt.stem,
plt.scatter,
plt.semilogx,
plt.semilogy,
plt.loglog]

for i,
plt.subplot (2, 3, 1)
func([1, 2, 31, [2, 1, 2])
plt.title(func.__name_)

plt.tight_layout ()

func in enumerate (plotfuncs,

plot stem

204 2
154 1
101, : . 0

1 2 3 1 2 3

semilogx semilogy

204 2x10°
15 4
101, 107 1, ;

1P 2x10@x10° 1 2 3

1.3.4 Symbolic manipulation

Imports

: import sympy

sympy.init_printing/()

Symbol definitions

s =
tau,

sympy.Symbol ('s")

K_c = sympy.symbols('tau K_c',

20

15

10

2= 10°

10°

A single symbol
positive=True)

—complex=True for other kinds of variables

Example controller and system

(tau*s))
/ ((10*s + 1)**2)

GvGpGm

scatter

e

1 [

1 2 3
loglog

-I

100 2x10x107

we can use real=True or.

12

Chapter 1. Getting Started

[117:

[127]:

Dynamics and Control, Release 0.0.1

Working with rational functions and polynomials

We often want nice rational functions, but sympy doesn’t make expressions rational by default

: chareqg = GvGpGm*Gc + 1

chareq

5K, (st +1)
s7(10s + 1)

The cancel function forces this to be a fraction. collect collects terms.

chareq = chareg.cancel () .collect (s)
chareq

5K, + 10037 + 20527 + s (5K.7 +T)
100837 4 20827 + sT

In some cases we can factor equations:

chareq. factor (s)

5K, + 100837 + 20827 + 5 (5K .7 + T)
s7(10s + 1)

Obtain the numerator and denominator:

: sympy.numer (chareq), sympy.denom(chareq)

(5K, + 10081 + 20s°T + s (5K.7 +7), 1007 + 2057 + s7)

If you want them both, you can use

: chareqg.as_numer_denom ()

(5K +100s*T + 20s°T + s (5K.7 +7), 10057 + 2057 + s7)

Convert to polynomial in s

: numer = sympy.poly(sympy.numer (chareq), s)

Once we have a polynomial, it is easy to obtain coefficients:

: numer.all _coeffs ()

[1007, 207, S5K.tr+7, bK,.]

Calculate the Routh Array

1.3. The Jupyter notebook cheat sheet

13

[20] :

[20] :

[26]:

[26] :

Dynamics and Control, Release 0.0.1

: from tbcontrol.symbolic import routh

: routh (numer)

1007 S5K.T+ 71

207 5K,
—25K.+717(5K.+1) 0

5K, 0

To get a function which can be used numerically, use lambdify:

: £ = sympy.lambdify ((K_c, tau), K_c + tau)

£(1, 2)
3
Functions useful for discrete systems
: z, g = sympy.symbols('z, g')
1 Gz = z**—1/(1 — z**-1)
Gz
1

Write in terms of positive powers of z:

: Gz.cancel ()

Write in terms of negative powers of z:

: Gz.subs ({z: g**-1}) .cancel ()

qg—1

Inversion of the z transform

: from tbcontrol.symbolic import sampledvalues

sampledvalues (Gz, z, 10)

14

Chapter 1. Getting Started

[27]:

[28]:

[31]:

[32]:

[32]:

Dynamics and Control, Release 0.0.1

: residuals =

: scipy.optimize.fsolve (residuals,

: array ([-2.21910715,

1.3.5 Equation solving
Symbolic

XI Yr ZI
residuals =
unknowns =

[X + Yy - 21
[x, vy, z]
sympy.solve (residuals,

y + z - a,
unknowns)

{z:

Numeric sympy

[Z*X**Z — 2*y**2’
[x, VI
sympy.nsolve (residuals,

unknowns =
unknowns,

Numeric

: import scipy.optimize

: def residuals (unknowns) :

unknowns
[Z*X**Z — Z*Y**Z,

X, ¥y =
return

starting_point = [1, 3]

residuals (starting_point)

(16,

2.219107157)

a = sympy.symbols('x, vy, z,
X + vy + z]

—a,

sympy.sin (x)

1,

numpy.sin (x)

a')

yia+2, z:-2}

+ sympy.log(y)]
31)

—2.21910714891375
2.21910714891375

+ numpy.log(y)]

1.9400832734760063]

starting_point)

1.3. The Jupyter notebook cheat sheet

15

[34]:

[36]:

Dynamics and Control, Release 0.0.1

1.3.6 Matrix math
Symbolic

Gl1, G12, G21, G22 = sympy.symbols('Gll, G12, G21, G22'")

Creation

G = sympy.Matrix ([[Gl1l, G12], [G21, G22]1)

G
Gi1 Gz
Go1 Ga

Determinant, inverse, transpose

G.det (), G.inv (), G.T

= — o Gu G
G11Ga2 — G12Gy, | G11C2E00n Gty Gl [G G }
G11G22—G12G21 G11G22—G12G21 12 22

Math operations: Multiplication, addition, elementwise multiplication:

: G*G, G+G, G.multiply_elementwise (G)

<[Gl +Gi1aGar GuGia + G12G22] [QGM 2G12} {G% G%])
G11Go1 + G21G22 G12G21 + G5, 2Go1 2Ga|’ |G% G%,

Numeric

Creation

: G = numpy.matrix ([[1, 2], [3, 41])

Determinant, inverse, transpose

: numpy.linalg.det (G), G.I, G.T

(-2.0000000000000004, matrix([[-2. , 1. 1,
[1.5, -0.5]1), matrix([[1, 3],
(2, 411))

Math operations: Multiplication, addition, elementwise multiplication:

: G*G, G+G, G.A*G.A

(matrix([[7, 10],
[15, 221]), matrix([[2, 4],
(6, 811), array([[1, 4],
[9, 1611))

16 Chapter 1. Getting Started

Dynamics and Control, Release 0.0.1

1.3. The Jupyter notebook cheat sheet

17

Dynamics and Control, Release 0.0.1

18 Chapter 1. Getting Started

CHAPTER
TWO

DYNAMICS

2.1 Modelling

2.1.1 The draining cup problem

In this notebook we will be modelling a draining cup. We assume the cup is shaped like a conical frustrum or truncated
cone:

HI

D and d are the top and bottom diameters of the cup, H is the side length between the diameters, d, is the hole diameter.
We also define H' as the vertical height of the cup and h as the vertical height (or level) of the liquid in the cup

19

http://mathworld.wolfram.com/ConicalFrustum.html

Dynamics and Control, Release 0.0.1

Volume-height relationship

Let’s work out the relationship between the volume of water and the level in the cup by integrating the area:

h
V:/O A(h)dh

: import sympy

sympy.init_printing/()

: D, d, H, h = sympy.symbols('D, d, H, h', real=True)

: R =D/2
r = d/2
Hprime = sympy.sqgrt (H**2 - (R - r)**2) # Pythagoras

The radius changes linearly from the small one to the large one:

: radius = r + h/Hprime* (R - r)

Now it is easy to calculate the area:

: A = sympy.pi*radius**2

And from there, the volume:

: V = sympy.integrate (A, (h, 0, h))

wd?h h3 (7TD2 — 27 Dd + 7rd2) h? (—7de + 7rd2)
4 3D2—6Dd—12H2+3d> 2/—D?+2Dd + AH? — &2

: print (V)

pi*d**2%h/4 — h**3% (pi*D**2 - 2*pi*D*d + pi*d**2)/(3*D**2 - 6*D*d — 12¥H**2 + 3*d**2)._

<= h**2% (-pi*D*d + pi*d**2)/(2%sqrt (-D**2 + 2*D*d + 4XH**2 - d**2))

Dynamic model

The basic model of the cup we will be working with looks something like this:

av

o — Flout Mass Balance simplified to volume balance

Fou = f(h) Hydraulics
h=f(V) Geometry

The above geometric description allows us to find the V'(h), but we actually want h(V).

2.1)

(2.2)
2.3)
(2.4)

20 Chapter 2. Dynamics

[19]:

Dynamics and Control, Release 0.0.1

: Vsymb = sympy.symbols ('V', real=True)

hVv = sympy.solve (Vsymb - V, h)

hv

9(3D2d-

4D2 _8Dd+4d? 7D2 _27xDd+mwd2

(—2D\/—D2+2Dd+4H2—d2+2d\/—D2+2Dd+4H2—dz

3
4(3(—3D2d2+GDd3+12H2d2—3d4)+ (3D2d—6Dd2—12H2d+3d3)2) +<27(3D2V—6Dvd—12H2V+3Vd2)

(—2D\/—D2+‘

2

#print (hV)

—(=3% (=3*D**2%d**¥2 + 6*D*¥d**3 + 12¥H**2xd**2 — 3*d**4)/ (4*D**2 — 8*D*d + 4*d*¥*2) +_

< (3*D**2*d — 6*D*d**2 — 12%H**2%d + 3%d**3)**2/ (-2*D*sqrt (-D**2 + 2*D*d + 4*H**2 —_
d**2) + 2%d*sqrt (-D**2 + 2%D*d + AX¥H**2 - d¥*2))**2)/ (3% (sqrt (—4* (~3*% (~3*D**2*d**2_
o+ 6*¥D*d**3 + 12¥H**2%d**2 - 3%d**4)/(4*D*¥*2 — 8*D*d + 4*d**2) + (3*D**2*d -
6*¥D*d**2 — 12%¥H*¥*2%d + 3%d**3)**2/ (-2*D*sqrt (-D**2 + 2%D*d + 4XH**2 — d**2) +_
2%d*sqrt (~D**2 + 2*%D*d + 4XH**2 — d¥*2))**2)**¥3 + (27% (3*DF*2*V - 6*D*V*d —_
CA2XH**2XV + 3*VAA**2) / (pi*D**2 — 2%pi*D*d + pi*d**2) — 9% (3*D**2*d — 6*D*d**2 —_
S12%H**2%d + 3%d**3) % (-3*D**2%d**2 + 6*D*¥d**3 + 12¥Hx*2xdx*2 — 3*d**4)/((-2*D*sqrt (-
D**2 + 2%D*d + 4*H**2 — d**2) + 2%d*sqrt (-D**2 + 2%Dxd + AXH**2 — d**2))* (4*D**2 —_
.8*D*d + 4*d**2)) + 2% (3*D**2%d — 6*D*A**2 - 12¥H**2*d + 3%d**3)**3/ (-2*D*sqrt (~-D**2.
o+ 2%D*d + 4¥H**2 — d**2) + 2%d*sqrt (-D**2 + 2*Dxd + AXH**2 - d**2))**3)**2) /2 +_
27% (3*D**2FV — 6FD*VHd — I12K¥H**2%V + 3*V*d**2)/ (2% (pi*D**2 — 2*pi*D*d + pi*d**2)) -_
9% (3*¥D**2*d — 6*D*d**2 — 12¥H**2%d + 3xd¥*3) K (=3FDF*2*d¥*¥2 + 6*DrA¥*3 +_
CA2XH**Q*A**D — 3*d**4) /(2% (-2*D*sqrt (-D**2 + 2*D*d + AXH**2 - d**2) + 2*d*sqrt (-
D**2 + 2%D*d + 4¥H**2 — d**2))* (4*D**2 - 8*D*d + 4*d**2)) + (3*D**2*d — 6*D*d**2 —_
CA2%H**2%d + 3*d**3) **3/ (-2*D*sqrt (-D*¥*2 + 2*D*d + AXH**2 - d**2) + 2*d*sqrt (-D**2 +_
2%D*d + AXH**2 — d**2)) **3)** (1/3)) - (sqrt (-4* (=3% (=3*D**2*d**2 + 6*D*d**3 +_
CA2XHXR2*AXF2 — 3%d**4) / (4*D**2 — 8*D*d + 4*d*¥*2) + (3*D¥*2%d — 6*DrA**2 — 12¥H**2xd.
o+ 3%A**3) **2/ (-2*%D*sqrt (-D**2 + 2%D*d + AX¥H**2 — d**2) + 2*d*sqrt (-D**2 + 2*D*d +_
CAXH**D - dR*2)) KHR2) K3 4 (27% (3¥DF*2KV — 6*DAVrA — 12¥HX*2FV + 3FVAA**2) / (pi*D**2 -
2%pi*D*d + pi*d**2) — 9% (3*D**2%d — 6*¥D¥d¥*2 - 12%H**2xd + 3*d**3) * (=3*D*F2*d**¥2 +_
S 6*¥D*¥A**3 + 12¥H**2%d**2 — 3xd**4)/ ((-2*D¥sqrt (-D**2 + 2*D*d + 4¥H**2 - d**2) +_
2%d*sqrt (~D**2 + 2*%D*d + 4*¥H**2 — d¥*2))* (4*D**2 — 8*D*d + 4*d**2)) + 2% (3*D**2*d -_
. 6*D*A**2 — 12KH**2%d + 3%d**3)**3/ (-2*D¥sqrt (-D**2 + 2%D*d + 4¥H**2 — d**2) +_
2%d*sqrt (-D**2 + 2%D*d + AXH¥*¥2 — d**2))**¥3)**2) /2 + 27% (3*D**2*V - 6*D*V*d -
CA2XH**2XV 4+ 3FVAA**2) /(2% (pi*D**2 — 2%pi*Drd + pi*d**2)) - 9% (3*D**2*d — 6*D*d**2 —_
GA2KH*R2*A + 3XA¥*3) K (=3FDAA2KARKRD + EXDHAX¥*I 4+ L2FHX*2KA¥*R2 — 3Ixdr*4) /(2% (-
,2*D*sqrt (-D**2 + 2*D*d + 4¥H**2 — d**2) + 2%d*sqrt (-D**2 + 2*D*d + 4*¥H**2 —_

. d**2)) % (4*D**2 — 8*D*d + 4*d**2)) + (3*D**2%d - 6*¥Drd**2 - 12¥H**2*d + 3*d**3) **3/ (-
.2*D*sqrt (-D**2 + 2*D*d + 4*¥H**2 — d**2) + 2*d*sqrt (-D**2 + 2*D*d + 4¥H**2 —_
dx*2)) **3) ** (1/3) /3 — (3*D**2%d — 6*D*d**2 — 12%H**2%d + 3xdx*3)/(3* (-2*D*sqrt (-
D**2 + 2%D*d + 4¥H**2 — d**2) + 2%d*sqrt (-D**2 + 2*D*d + 4XH**2 - d**2)))

2.1. Modelling 21

Dynamics and Control, Release 0.0.1

2.2 Time domain simulation

2.2.1 Equation solving tools

We distinguish between root finding or solving algebraic equations and solving differential equations.

It is also useful to distinguish between approximate solution using numeric methods and exact solution.

Exact solution using sympy

We can solve systems of equations exactly using sympy’s solve function. This is usually done using what is known as
the residual form. The residual is simply the difference between the LHS and RHS of an equation, or put another way,

we rewrite our equations to be equal to zero:

rT+y==z
Sr+y—2=0
: import sympy
sympy.init_printing/()
smatplotlib inline
: X, YV, zZ = sympy.symbols('x, vy, z')
sympy.solve(x + vy — z, z)
[z +]

We can solve systems of equations using solve as well, by passing a list of equations

: equations = [x + y - z,

2*x +y + z + 2,
X -y — z + 2]

unknowns = [x, y, z]
solution = sympy.solve (equations, unknowns)
solution

$Stimeit
sympy.solve (equations, unknowns)

13.5 ms + 4.97 ms per loop (mean + std. dev. of 7 runs, 100 loops each)

Notice that the result is a dictionary. We can get the individual answers by indexing (using [])

solution([x]

(2.5)
(2.6)

22 Chapter 2. Dynamics

https://docs.python.org/3/tutorial/datastructures.html#dictionaries

[117]:

[12]:

[13]:

Dynamics and Control, Release 0.0.1

We often need the numeric value rather than the exact value. We can convert to a floating point number using . n ()
solution[x].n ()

—1.33333333333333

Special case: linear systems

For linear systems like the one above, we can solve very efficiently using matrix algebra. The system of equations can be
rewritten in matrix form:

Ax=Db

: equations

[4+y—2 2x4+y+z+2, z—y—z+2

: A = sympy.Matrix([[1, 1, -1],
(2, 1, 11,
(1, -1, -111)
b = sympy.Matrix([[0, -2, -2]]).T
A.solve (b)
_4
3
1
_1
3
$%time
A.solve (b)

CPU times: user 2.49 ms, sys: 882 ps, total: 3.37 ms
Wall time: 10 ms

Qi

Wl

We can repeat the solution using numpy. This is considerably faster than using sympy for large matrices.

import numpy

2.2. Time domain simulation 23

[14]:

[15]:

[18]:

[19]:

Dynamics and Control, Release 0.0.1

A = numpy.matrix([[1, 1, -11,
(2, 1, 11,
(1, -1, -111)
b = numpy.matrix([[0, -2, -2]]).T

numpy.linalg.solve (A, b)

] matrix([[-1.33333333],

[1. 1y
[-0.3333333311])

$%time
numpy.linalg.solve (A, Db)

CPU times: user 113 ps, sys: 24 us, total: 137 ups
Wall time: 129 us

]: matrix([[-1.33333333],

[1. i
[-0.3333333311)

The numpy version is much faster, even for these small matrices. Let’s try that again for a bigger matrix:

: N = 30

bigA = numpy.random.random((N, N))

bigb = numpy.random.random((N,))

$%timeit
numpy.linalg.solve (bigA, bigb)

40.6 ps £ 1.3 ps per loop (mean += std. dev. of 7 runs, 10000 loops each)

: bigsymbolicA = sympy.Matrix (bigA)

: bigsimbolicbh = sympy.Matrix (bigb)

$stimeit
bigsymbolicA.solve (bigsimbolicb)

1.18 s + 69 ms per loop (mean *+ std. dev. of 7 runs, 1 loop each)

Wow! That takes about a million times longer.

Nonlinear equations

In some cases, sympy can solve nonlinear equations exactly:

X, y = sympy.symbols('x, y'")

sympy.solve ([x + sympy.log(y), y**2 - 11, [x, y])

24 Chapter 2.

Dynamics

[27]:

[28]:

Dynamics and Control, Release 0.0.1

We can also specify the kinds of solutions we are interested in by increasing our specifications on the symbols. The answer
above contained a complex answer. In engineering we often want only real solutions

X, y = sympy.symbols('x, y', real=True)

sympy.solve ([x + sympy.log(y), y**2 - 11, I[x, yl)

[0, 1)]

But sometimes nonlinear equations don’t admit a closed-form solution:

unsolvable = x + sympy.cos(x) + sympy.log(x)

sympy.solve (unsolvable, x)

NotImplementedError Traceback (most recent call last)
<ipython-input-27-8845e2a074b6> in <module> ()

1 unsolvable = x + sympy.cos(x) + sympy.log(x)
-———> 2 sympy.solve (unsolvable, x)

~/anaconda3/lib/python3.6/site-packages/sympy/solvers/solvers.py in solve(f, *symbols,
— **flags)

1063 FHA A S S S
<~>#

1064 if bare_f:
-> 1065 solution = _solve (f[0], *symbols, **flags)

1066 else:

1067 solution = _solve_system(f, symbols, **flags)

~/anaconda3/lib/python3.6/site-packages/sympy/solvers/solvers.py in _solve (f, .
—*symbols, **flags)

1632
1633 if result is False:
-> 1634 raise NotImplementedError ('\n'.join([msg, not_impl msg % f]))
1635
1636 if flags.get ('simplify', True):

NotImplementedError: multiple generators [x, cos(x), log(x)]
No algorithms are implemented to solve equation x + log(x) + cos(x)

Numeric root finding

In such cases we need to use approximate (numeric) solutions. When finding roots numerically it is a good idea to produce
a plot if possible:

sympy.plot (unsolvable)

2.2. Time domain simulation 25

[287]:

[29]:

[29] :

[30]:

[30]:

Dynamics and Control, Release 0.0.1

=

=
10.0 A
754
5.0 4
25

—

=100 -75% 50 25 o

<sympy.plotting.plot.Plot at 0x1llee4cl98>

sympy.plot (unsolvable, (x,

iz}

154

104

0.

1,

1))

06

o7

0.g 09 10

<sympy.plotting.plot.Plot at 0x11£2dd908>

We see the root is between 0 and 1 and there appears to be an asymptote at 0. Let’s zoom in a bit

Sympy.nsolve will attempt to find a root starting near a starting point. 0.3 looks like a good first guess.

sympy.nsolve (unsolvable, x,

0.

3)

0.287518275445415

If we’re going to be using numeric methods anyway, we can also use the routines in scipy.optimize to solve equations:

: import scipy.optimize

The function sympy . lambdi fy can be used to build a function which evaluates sympy expressions numerically:

: plus_two = lambda x: x+2

26

Chapter 2. Dynamics

[39]:

w
Ne)

Dynamics and Control, Release 0.0.1

: plus_two (2)

4
: def plus_two (x):
return x + 2
unsolvable_numeric = sympy.lambdify (x, unsolvable)

unsolvable_numeric (0.3)

0.051363684799669906

This is the kind of thing we can pass to scipy.optimize.fsolve

scipy.optimize.fsolve (unsolvable_numeric, 0.1)

array ([0.28751828])

fsolve works for multiple equations as well, just return a list:

: def multiple_equations (unknowns) :

%, y = unknowns
return [x + vy — 1,
x — vl

multiple_equations ([1, 2])

first_guess = [1, 1]
scipy.optimize.fsolve (multiple_equations, first_guess)

array ([0.5, 0.5])

Downsides of numerical solution

Remember the downsides of numerical solution:
1. Approximate rather than exact

2. Requires an initial guess

3. Slower to solve the equation every time rather than solving it once and then substituting values.

4. Typically only finds one solution, even if there are many.

2.2. Time domain simulation

27

[41]:

[43]:

[43]:

Dynamics and Control, Release 0.0.1

Differential equations

Now for differential equations.

We'll solve the “classic” tank problem:

Iﬂn

A
V h
F-::-r:f
Y -
A
Fout = kh 2.7
dh 1
— = — (Ey, — F,y 2.8
2.9
Analytic solution
Sympy can solve some differential equations analytically:
h = sympy.Function('h') # This 1s how to specify an unknown function in sympy

t = sympy.Symbol('t', positive=True)

-~
|
ol

Fout = K*h(t)
Fout

We use .diff () to take the derivative of a function.

: de = h(t).diff(t) - 1/A*(Fin - Fout)

de

28 Chapter 2. Dynamics

[46] :

[47]:

[48]:

[50]:

[50]:

Dynamics and Control, Release 0.0.1

d
LOR(t) + —h(t) = 2.0

Here we calculate the general solution. Notice this equation just satisfies the original differential equation when we plug
it in, we don’t have specific values at points in time until we specify boundary conditions.

solution = sympy.dsolve (de)
solution

h(t) = Cre 10" +2.0

We need a name for the constant of integration which Sympy created. Expressions are arranged as trees with the arguments
as elements. We can navigate this tree to get the C1 element:

Cl = solution.rhs.args[1].args[0]
We can find the value of the constant by using an initial value:

hOo = 1

constants = sympy.solve(solution.rhs.subs({t: 0}) - hO, C1)
constants

[~1.0]

Let’s see what that looks like

: import matplotlib.pyplot as plt

smatplotlib inline

sympy.plot (solution.rhs.subs ({Cl: constants[0]}), (t, 0, 10))

fit)

207

18

la A

=
%]
=9
o
=]

10
14 -

124

10 -

<sympy.plotting.plot.Plot at 0x10209a5d68>

2.2. Time domain simulation 29

[57]:

Dynamics and Control, Release 0.0.1

Numeric solution

When the boundary conditions of differential equations are specified at ¢ = 0, this is known as an Initial Value Problem
or IVP. We can solve such problems numerically using scipy.integrate.solve_ivp.

import scipy.integrate

Fin = 2

: def dhdt (t, h):

"""Function returning derivative of h - note it takes t and h as arguments"""
Fout = K*h
return 1/A* (Fin - Fout)

solve_ivp will automatically determine the time steps to use, integrating between the two points in t span:
tspan = (0, 10)
sol = scipy.integrate.solve_ivp (dhdt, tspan, [h0])

We’ll need a smooth set of time points to evaluate the analytic solution

tsmooth = numpy.linspace (0, 10, 1000)
hanalytic = 2 — numpy.exp (-tsmooth)

: plt.plot(sol.t, sol.y.T, 'o-', label='solve_ivp solution')

plt.plot (tsmooth, hanalytic, label='Analytic solution')
plt.legend()

<matplotlib.legend.Legend at 0x1520b9%e6al0>

20 1 —> = ¥
18~
16 A
141
121
L] —®= splve jivp solution
10 4 Analytic salution
0 2 4 & & 10

Notice that solve_ivp is taking really large steps but is still getting a really accurate solution. Of course, because we
are taking such big steps to solve the differential equation, we now have a problem of interpolating between those points.
The linear interpolation is clearly not very good, so solve_ivp supplies an extra argument which allows us to specify
points we want the solution at. Note that this does not change the step size. The same steps are used internally and are
then interpolated using a smooth function which is known to approximate the solution to the differential equation well.

sol = scipy.integrate.solve_ivp(dhdt, tspan, [h0], t_eval=tsmooth)

30 Chapter 2. Dynamics

https://en.wikipedia.org/wiki/Initial_value_problem

Dynamics and Control, Release 0.0.1

[59]: plt.plot (tsmooth, sol.y.T)
plt.plot (tsmooth, hanalytic, '—-'")
[59]: [<matplotlib.lines.Line2D at 0x1520beb908>]
2.0 1 —————
.-"'HH
>
-
18 /

Fi

!

i

16 1 f

i

f
f
14 I
I
[
124 |
|
!
104 !

2 4 5] 8 10

We can see that this interpolation is very close to the correct solution
There is a problem with taking big steps if inputs change discontinuously. This example illustrates the problem:

import scipy.integrate

mn

[60]:
[61]: def Fin(t) :
""rm A step which starts at t=2
if t < 2:
return 1
else:
return 2
[62]: def dhdt(t, h):
Fout = K*h
return 1/A* (Fin(t) - Fout)
[63]: tspan = (0, 10)
[64]: sol = scipy.integrate.solve_ivp (dhdt, tspan, [hO0])
smoothsol = scipy.integrate.solve_ivp (dhdt, tspan, [h0], t_eval=tsmooth)
VO')

plt.plot(sol.t, sol.y.T,
smoothsol.y.T)

[65]:
plt.plot (smoothsol.t,
[<matplotlib.lines.Line2D at 0x1520cab358>]

[65]:

2.2. Time domain simulation

Dynamics and Control, Release 0.0.1

2.0 1 a8
T ®
]_E T __z".‘.
16
g
14 -
12
104 & .
T T T T T T
0 2 4 & & 10
That downward bump in the level is a numerical anomaly due to the places where the samples are taking during integration.
To make sure that we don’t miss the moment when the step occurs, we can limit the step size that solve_1ivp uses.
[66]: sol = scipy.integrate.solve_ivp (dhdt, tspan, [h0], max_step=0.1)
smoothsol = scipy.integrate.solve_ivp (dhdt, tspan, [hO0], t_eval=tsmooth, max_step=0.1)

[67]: plt.plot(sol.t,
plt.plot (smoothsol.t,

[67]:

sol.y.T, 'o")
smoothsol.y.T)

[<matplotlib.lines.Line2D at 0x1520d8ee48>]
210 1
18 4
16 '3
L
]
]
14 4 '
p
4
124 ?
o
|
10 1
T T T T T T
0 2 4 5] 8 10
This works, but we pay for this with computer time:
[68]: %$%timeit
sol = scipy.integrate.solve_ivp (dhdt, tspan, [h0])
3.25 ms + 207 ps per loop (mean * std. dev. of 7 runs, 100 loops each)
[69]: %%timeit
sol = scipy.integrate.solve_ivp (dhdt, tspan, [h0], max_step=0.1)
19.5 ms £ 266 ps per loop (mean * std. dev. of 7 runs, 100 loops each)

Chapter 2. Dynamics

32

Dynamics and Control, Release 0.0.1

A note about odeint

The default solver for ODEs in scipy used to be odeint, but this is now officially deprecated. You may still encounter it in

older codes, so take note of the differences:

: def odeintdhdt (h, t):
"""Odeint expects a function with the arguments reversed from solve_ivp"""

return dhdt (t, h)

The order in which the initial values and the input times are specified is different. Also, unlike solve_1ivp, you always

give odeint the times you want the results at.

odeinth = scipy.integrate.odeint (odeintdhdt, hO, tsmooth)

: plt.plot(sol.t, sol.y.T, 'o'")

plt.plot (tsmooth, odeinth)

[<matplotlib.lines.Line2D at Oxlleca3518>]

201
18
16 - s
°
b
i
14 ®
¢
g
1.2 T ‘
®
10 1 ———
T T T T T T
0 2 4 6 8 10

2.2.2 The problem with simple math on computers

Have you ever considered how computers store numbers? Can you explain why this happens?
a=0.12+0.17+0.2+0.17+0.2+0.17+0.2+ 0.1+ 0.2+ 0.1
a

0.9999999999999999

: False

:b=20.125 + 0.125 + 0.125 + 0.125 + 0.125 + 0.125 + 0.125 + 0.125
b

1.0

2.2. Time domain simulation

33

Dynamics and Control, Release 0.0.1

== 1.

] : True

Computers use base 2 instead of base 10

You've heard that computers are all about ones and zeros, right? What does this mean?

When I write a “normal” number like 123, what I mean is 1 x 102 4+ 2 x 10' + 3 x 109. This idea is called base 10 or
decimal representation. Computers use binary or base 2 representation. This means you would write 1015 = 5,0, with
the subscript representing the base. The math would work out as 1 x 22 +0 x 2! 4+ 1 x 29, just like in the 123 example.

This representation is exact for integers, but we run into problems when we use fractions. For instance, we all know that
1/3 doesn’t have a finite representation in decimals, since 1/3 = 0.33 = 3 x 107 + 3 x 1072 + - - - forever. Notice
that in base 3, 1/3 works out fine as 0.13 since 1/3 = 1 x 37! exactly. So here’s the problem with writing 0.1 in binary:

This visualisation shows how IEEE floats are represented and indicates the repeating structure of the representation of
0.1.

=
¥ exponent significand

0111111 lHl 1 1|0 0|1 1|0 0|1 1|0 0|1 1|0 0|1 1|0 0|1 1|0 0|1 1|0 0|1 1|0 0|1 1/0 0|1 1|0 0|1 1|0 0|1 1|0 0|1 1|0|1|0
.

We can see that the binary representation is not finite, so the computer treats 1/10 more like a number like 1/7 (which we
all know has an infinite decimal representation).

=

There is a great deal more information on this issue at these pages:
 The Floating-Point Guide - this is an easy-to-read page with lots of examples

e What Every Computer Scientist Should Know About Floating-Point Arithmetic - a more in-depth analysis of
floating-point with lots of math

Solutions

Built-in to Python

The solution that Python supplies in the standard library is the decimal module:

: import decimal

decimal.Decimal ('0.1")

j\J)
Il

1/decimal .Decimal (10)

o}
Il

: sum(a for i in range (10))

]: Decimal('1.0")

: sum (0.1 for i in range (10))

]: 0.9999999999999999

34 Chapter 2. Dynamics

http://bartaz.github.io/ieee754-visualization/
http://floating-point-gui.de/
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

[107]:

[117:

[12]:

[12]:

[15]:

[15]:

[16]:

[16]:

[187:

[197:

Dynamics and Control, Release 0.0.1

Sympy

Sympy also has a solution in the form of a Rational object

import sympy
sympy.init_printing/()

b = sympy.Rational ('0.1")

b
1
10

We can also use sympy .nsimplify.

tb=1

c =10

a =Db/c

type (a)

float

sympy.nsimplify (a)
1
10

Why isn’t math always done in base 10?

The extra precision comes at a cost.

$%timeit

a=20.1

s =0

for i in range (100000) :
s += a

5 ms + 321 ps per loop (mean * std. dev. of 7 runs, 100 loops each)

$%timeit

a = decimal.Decimal('0.1")
s = decimal.Decimal (0)
for i in range (100000) :

s +t= a

10.8 ms = 246 ps per loop (mean * std. dev. of 7 runs, 100 loops each)

$%timeit
a = sympy.Rational (1, 10)

2.2. Time domain simulation

(continues on next page)

[20] :

[21]:

[21]:

Dynamics and Control, Release 0.0.1

s =0
for i in range (100000) :
s += a

2.03 s £ 166 ms per loop (mean + std. dev.

Using sympy rationals is about a thousand times slower than using built-in Python f1loats.

Forcing rounding of exact representations

of 7 runs, 1 loop each)

(continued from previous page)

If an equation results in an “Exact” answer which isn’t “useful”, like v/3x, we can approximate that using sympy . N

x = sympy.Symbol ('x")

expr = sympy.sqrt (3)*x
expr

sympy.simplify (expr**2)

sympy.simplify (sympy.N (expr, 3)**2)

import numpy
import matplotlib.pyplot as plt
smatplotlib inline

V3a

32

3.0z

36

Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

o U1 W DN P O

2.2.3 Read simulation input from a file

It is often useful to read simulation inputs from a file. Let’s do this for our standard tank system.

Iﬂn

A
Vv h
find
y -
A
Fo,ue =kh (2.10)
dh 1
— = — (F;, — F, 2.11
d ¢ A (3 out) ()
(2.12)
First we define the parameters of the system
: K =1
A =1
Then, we'll read the values of Fj,, from an Excel file using pandas.read_excel.
: import pandas
: df = pandas.read_excel('../../assets/tankdata.xlsx"')
df
Time Fin
0 1.0
5 2.0
10 2.0
15 1.5
20 1.0
25 2.0
30 2.0
We’ll set this function up to interpolate on the above table for the value of F;n given a known time.
: def Fin(t):
return numpy.interp(t, df.Time, df.Fin)
We can test for one value at a time
2.2. Time domain simulation 37

[8]:

[127:

[137:

[13]:

Dynamics and Control, Release 0.0.1

: Fin (1)

interp also accepts vector inputs:

: tspan = (0, 30)

t = numpy.linspace (*tspan)

: plt.plot(t, Fin(t))

[<matplotlib.lines.Line2D at 0x112b4c208>]

204

18 4

16 A

144

124

10 4

Now we're ready to define our differential equation function:

: def dhdt(t, h):

Fout = K*h

return 1/A* (Fin(t) - Fout)

: h0 =1

: import scipy.integrate

sol = scipy.integrate.solve_ivp (dhdt,

plt.plot(sol.t, sol.y.T)

15

20

25

tspan,

[<matplotlib.lines.Line2D at 0x1513ee6b38>]

(hO],

t_eval=t)

38

Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

204

15 A

16 A

14 -

12

10 4

2.2.4 Fed Batch Bioreactor

This model represents the fed batch bioreactor in section 2.4.9 of Seborg et al.

Nr Symbol Name Units

1 [Uhives Maximum specific growth rate 1/hr

2 K Monod constant g/L

3 Yx/s Cell yield coefficient 1

4 Yp/s Product yield coefficient 1

5 X Cell mass concentration g/L

6 S Substrate mass concentration g/L

7 v Volume L

8 P Substrate mass concentration g/L

9 F Feed flow rate L/hr

10 S¢ Substrate mass concentration g/

11 u Specific growth rate 1/hr

12 rg Cell growth rate g/(Lhr)
13 7, Product growth rate g /(L hr)

Model equations:

2.2. Time domain simulation

39

Dynamics and Control, Release 0.0.1

< "o X

Nr Equation Inputs Outputs Parameters
1 . 7,y X .
rg = puX
2 . S Hmax, Ks
S
AL::Ahnamj?;f¥i§
3 . P Yp/x
rp =Yp/xTG
4 L] V L]
d(XV
() =Vrg
dt
5 L] P L]
d(PV
(PV) =Vr,
dt
6 F., Sy . Y /s
d(SV)
=FS;—Vr
dt J
7 L] L] L]
av
dt
Number 7 2 7 4
Parameters
]: mumax = 0.2 # Maximum growth rate
K s = 1.0 # Monod constant
Y xs = 0.5 # Cell yield coefficient
Y px = 0.2 # Product yield coefficient
States
= 0.05 # Concentration of the cells
= 10 # Concentration of the substrate
=0 # Concentration of the product
=1 # Reactor volume
x0 [X, S, P, V] # State vector

Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

Inputs

F = 0.05 # Feed rate
S_f = 10 # Concentration of substrate 1in feed

def dxdt (t, x):
[XI S, P, V] = x

mu = mu_max * S / (K_s + 9)

rg = mu * X

rp = Y_px * rg

dvdt = F

dxdt = 1/V*(V * rg - dvdt*X)

dpdt = 1/V*(V * rp - dvdt*P)

dsdt = 1/V*(F * S_f - 1 / Y_xs * V * rg - dvdt*S)

return [dXdt, dSdt, dpPdt, dvdt]

import scipy.integrate
import numpy

import matplotlib.pyplot as plt
tmatplotlib inline

tspan = [0, 30]

tsmooth = numpy.linspace (0, 30)
Fs = [0.05, 0.02]

results = []

for F in Fs:
out = scipy.integrate.solve_ivp (dxdt, tspan, x0, t_eval=tsmooth)
results.append (out)

names = ['X', 'S', 'P', 'V']

units = {'X': 'g/L', 'S': 'g/L', 'P': 'g/L', 'V': 'L'}

ax = {}

fig, [[ax['X'], ax['P']], [ax['S'], ax['V']]] = plt.subplots(2, 2)

for F, out in zip(Fs, results):
var = {name: y for name, y in zip(names, out.y)}
for name in names:
ax[name] .plot (out.t, var[name])
ax[name] .set_ylabel (f'{name} ({units[name] })")
ax[name] .set_xlabel ('Time (hr)")
plt.tight_layout ()

2.2. Time domain simulation 41

Dynamics and Control, Release 0.0.1

¥ g/l
F (arL)

S {gil)
W (L)

T
o 10 20 30
Time {hr) Time {hr)

2.2.5 CSTR system

This notebook explores solutions to the system discussed in Seborg, Edgar, Melichamp & Doyle “Process Dynamics and
Control” (3rd Ed).

Pure A
g, cai» T; ‘L
Mixture of A and B
NN N N e
q,ca T

V.e. T

by

Cooling medium
at temperature
T

c

42 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

Model
-F
k= i 2.13
0 EXp (RT) ()
w = qp (2.14)
d
V% =q(ca; —ca) — Vkea (2.15)
dT
VpCyy =wC(Ti = T) + (~AHR)Vhea + UA(T. — T) (2.16)
EB:
dE
—_ = Ez - Eou
dt !
MB:
d—m Min, — M
dt in out
CB:
dN
TtA = NA,in - NA7out + NA,gen - NA,consumed

: import numpy

import scipy
import scipy.optimize
import scipy.integrate

Parameter values from Table 2.3

: g =100 # L/min

cA_i =1 # mol/L

T_i = 350 # K

vV = 100 # L

rho = 1000 # g/L

C = 0.239 # J/(g K)
Hr = -5e4 # J/ (g9 K)

E_over_R = 8750 # K
kO = 7.2e10 # 1/min
UA = 5e4 # J/(min K)

This is the intial value of the input 7,

: Tc = TcO = 300 # K

These are the initial values of the states given in the question. Notice that these are not 100 % accurate. When we simulate
using these values, we don’t get a perfect straight line (derivatives equal to zero) as we should when using the steady state
values.

: cA0 = 0.5 # mol/L

TO = 350 # K

‘We define the function to calculate the derivatives here.

2.2. Time domain simulation 43

[5]:

[11]:

[12]:

Dynamics and Control, Release 0.0.1

def intsys(t, x):
cA, T = x
k = kO*numpy.exp (-E_over_R/T)
w = g*rho
dcAdt = g*(cA_1 - cA)/V - k*cA

dTdt = 1/(V*rho*C)* (w*C*(T_i — T) — Hr*V*k*cA + UA*(Tc - T))

return dcAdt, dTdt
x0 = [cAO0, TO]

Let’s see what the derivatives look like at this “steady state”
intsys (0, x0)

(3.40208612952253e-05, -0.007117334999003795)

That doesn’t seem very close to zero. ..

Now, let’s simulate

import matplotlib.pyplot as plt
$matplotlib inline

tspan = (0, 10)
t = numpy.linspace (*tspan, 1000)

: def simulate () :
r = scipy.integrate.solve_ivp (intsys, tspan,

return r.y
cA, T = simulate ()

plt.plot(t, T)
plt.show ()

x0, t_eval=t)

350 1

345 -

340 1

335 1

330 1

325 1

We see a significant deviation from the straight line we were expecting!

44

Chapter 2. Dynamics

[16]:

[17]:

Dynamics and Control, Release 0.0.1

Solve for steady state

Now, let’s solve for a better initial value by setting the derivatives equal to zero

: def ss(x):
""" This wrapper function simply calls intsys with a zero time

return intsys (0, x)

We use fsolve to solve for a new steady state

: x0 = scipy.optimize.fsolve(ss, x0)

Let’s check that:

ss (x0)

(3.7614356074300304e-13, -7.879222786077396e-11)

Much better, let’s simulate:

cA, T = simulate()
plt.plot (t, T)
plt.show ()
+3.5e2

0.0060 4

0.0058 -

0.0056 -

0.0054 4

0.0052 4

] 2 4 B 10

mmn

What happened there? It seems as though these equations are quite hard to balance perfectly at the steady state, since
starting quite close to zero derivatives still gave some deviation toward the end. Nonlinear differential equations often

exhibit this high sensitivity to the initial value.

But look closely and you can see that the axis is strangely indicated. When we zoom out just a little the solution is more

clear:

cA, T = simulate ()
plt.plot(t, T)
plt.ylim(349, 351)
plt.show ()

2.2. Time domain simulation

45

Dynamics and Control, Release 0.0.1

351.00
350.75 4
350.50 -
350.25
350.00 4
349.75
349.50
349 25 4
349.00 T T T T T T
] 2 4 B] 10
I'd say that’s good enough.
Now we are ready to reproduce the figure
fig, (axT, axcA) = plt.subplots(2, 1, figsize=(7, 8))
for Tc in [290, 300, 305]:
cA, T = simulate ()
axT.plot (t, T, label=' K'.format (Tc))
axT.set_ylabel ('Reactor temperature (K)')
axcA.plot (t, cA, label=' K'.format (Tc))
axcA.set_ylabel ('Reactant A concentration (mol/L)")

axcA.legend()
plt.show ()

46

Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

440 -

420 1

400 -

380 1

360 1

340 1

Reactor temperature {K)

320 1

=
[=

— 290 K

= 305 K

P = =] L]
i i i i

Reactant A concentration (malflL)

[=]
=
i

=
(=)
£
o
[=]
=

Nonlinear behaviour

Nonlinear differential equations like this can exhibit very strange behaviour. We may expect that increasing the cool-
ing water temperature will always increase the reactor temperature, measured after a certain amount of time, but the
oscillatory behaviour we see in the graphs above give us a clue that everything may not be as simple as it appears.

sol = scipy.integrate.solve_ivp (intsys, tspan, x0)

Tends []
Tcs = numpy.linspace (300, 310, 1000)
for Tc in Tcs:

sol = scipy.integrate.solve_ivp (intsys, tspan, x0)
T sol.y[-1]
Tends.append (T[-1])

/Users/alchemyst/anaconda3/1lib/python3.6/site-packages/scipy/integrate/_ivp/rk.py:141:
— RuntimeWarning: invalid value encountered in true_divide

error_norm = norm(error / scale)
/Users/alchemyst/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:6:.
—RuntimeWarning: overflow encountered in double_scalars

/Users/alchemyst/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5:.

(continues on next page)

2.2. Time domain simulation 47

[21]:

Dynamics and Control, Release 0.0.1

(continued from previous page)

—RuntimeWarning: overflow encountered in double_scalars
mwnw

plt.plot (Tcs, Tends)

plt.ylabel ('Temperature after 10 minutes (K)')
plt.xlabel ('Cooling water step (K)')
plt.show ()

450 1

440 -

420 1

400 -

380 1

360 1

340 -

Temperature after 10 minutes (K)

320 1

300 302 304 06 308 310
Cooling water step {K)

We can see that there is often no easy explanation to system behavour like “Making x bigger will make y bigger”. For
nonlinear systems the answer to questions the direction of an effect is often very much “it depends”

2.2.6 Mixing system
Problem statement: The figure below shows a set of well-mixed mixing tanks. All the streams contain a binary mixture
of substance X and substance Y. Steams A, B and C are fed into the system from an upstream process.

Tanks 1 and 2 are drained by the force of gravity (assume flow is proportional to level), while the pump attached to the
tank 3 output is sized such that the level in tank 3 does not affect the flowrate through the pump.

You may assume that the valves in lines G, H, J and L can manipulate those flows directly.

The density of substance X is pX = 1000 kg/m3 and the density of substance Y is pY = 800 kg/m3.

48 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

A
L
1 XD
D
B K
J
v
2 *D
E
C I
bt ;
3 xD
F G
T

2.2.7 Steady state calculation

Find the steady state flow rates and compositions of all the streams given that 3 * Stream A is 1m3/h of substance X *

Streams B and C are both 1m3/h of substance Y. * H=G,H=2J,J=2L.

Flow rates

: px = 1000 # kg/m3

py = 800 # kg/m3

A = 1*px
B = l*py
C = 1l*py

: G=A+ B + C

2.2. Time domain simulation

49

[10]:

[117:

[12]:

Dynamics and Control, Release 0.0.1

[
Il

H
L =J

(1000
800,
800,

1650.0,
3100.0,

5200
2600
2600

1300.0,
1300.0,

650.
650.

/2
/2

: A, B, C,

’

I4
’

4

0,
0)

D, E, F, G, H, I, J, K, L

Compositions

xA = 1

xB = 0

xC = 0

xG = (xA*A + xB*B + xC*C) /G

x3 = xF = xH = xI = xJ = xK = xL = xG

x1l = xD = (xA*A + xL*L)/D

x2 = xE = (xB*B + xD*D + xK*K)/E

50 Chapter 2. Dynamics

[19]:

: k2

Dynamics and Control, Release 0.0.1

2.2.8 Design

Assuming all three tanks are of constant cross-sectional area of 3m2, find out what the proportionality constants should
be for tank 1 and 2 so that the steady state levels will be 1 m.

: Al = A2 = A3 = 3

:/hl = h2 = h3 = 1

: k1 = D/h1l
= E/h2
: k1, k2

(1650.0, 3100.0)

2.2.9 Dynamic simulation
Now that you have all the parameters in your system, simulate the response of the system to a sudden increase in flow rate
of A from 1 m3/h to 1.5 m3/h at time 0. You should start your simulation at steady state.

Assume that the level in tank 3 is also 1 m at the initial conditions. Note that the steady state relationships between H, G,
J and L will not hold over the whole simulation. Simply set them to their steady state values.

import scipy.integrate

Our states will be the total masses and mass of X in each tank. Let’s find the initial values at steady state first:

Find volumes via tank geometry

: V1l = Al*hl
V2 = A2*h2
V3 = A3*h3

Masses from volumes - assume ideal mixing

: M1

= V1/(x1/px + (1 - x1)/py)
M2 = V2/(x2/px + (1 - x2)/py)
M3 = V3/(x3/px + (1 - x3)/py)

©y0 = [ML1, M2, M3,

: def dMdt (t, vy):

Ml1*x1, M2*x2, M3*x3]

M1, M2, M3, Mlxl, M2x2, M3x3 =y

if t <= 0:

A = 1*px
else:

A = 1.5%px

xD = x1 = Mlx1/M1

(continues on next page)

2.2. Time domain simulation

51

[25]:

[25]:

[26] :

[27]:

[28]:

Dynamics and Control, Release 0.0.1

xE = x2 = M2x2/M2

xF = x3 = M3x3/M3

V1 = M1*(x1/px + (1 - x1)/py)
V2 = M2* (x2/px + (1 - x2)/py)
V3 = M3* (x3/px + (1 - x3)/py)
hl = vi/Aa1

h2 = V2/A2

h3 = V3/A3

xH = xI = xJ = xK = xLL = xG = x3

D = ki1*hil

E = k2*h2
dMldt = A + L - D
dM2dt = B + D + K - E
dM3dt = C + E + I - F

dM1x1dt = xA*A + xL*L - xD*D
dM2x2dt = xB*B + xD*D + xK*K - xE*E
dM3x3dt = xC*C + xXE*E + xI*I - xF*F

return dMldt, dM2dt, dM3dt, dMlxldt, dM2x2dt,

We expect t=0 to give zero derivatives
dMdt (0, y0)

('OI
.547473508864641e-13,
.0,
.0,
4.547473508864641e-13,

-4.547473508864641e-13)

O O B O

And for other times to give non-zero derivatives

dMdt (1, y0)

(500.0,
4.547473508864641e-13,
0.0,

500.0,
4.547473508864641e-13,
—-4.547473508864641e-13)

sol = scipy.integrate.solve_ivp(dMdt, (0, 10), yO0)

sol

message: 'The solver successfully reached the end of

nfev: 68

njev: 0
nlu: 0
sol: None

(continued from previous page)

dM3x3dt

the integration interval.'

(continues on next page)

52

Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

(continued from previous page)

status: O

success: True
t: array([0.00000000e+00, 1.00000000e-04, 9.32930762e-04, 9.26223838e-03,
9.25553145e-02, 9.25486076e-01, 1.86268269e+00, 3.13373601e+00,
4.83441945e+00, 7.23515873e+00, 9.99326358e+00, 1.00000000e+017)

t_events: None

y: array([[2828.57142857, 2828.61687016, 2829.03321934, 2833.18623756,
2873.68652849, 3191.18414035, 3411.4077485 , 3576.814922¢67,
3679.20042145, 3732.50482985, 3751.73742159, 3751.76206113],
[2657.14285714, 2657.14285827, 2657.14297442, 2657.1545728 ,
2658.2647728 , 2730.90792703, 2850.15605228, 2978.77726282,
3075.5278406 , 3130.61308859, 3150.4898384 , 3150.51308613],
[2600. , 2600. , 2600.00000004, 2600.00003725,
2600.0360844 , 2626.36069917, 2755.48727041, 3096.98554741,
3748.1911919 , 4840.17117488, 6180.11425868, 6183.43458116],
[2142.85714286, 2142.90258442, 2143.31893191, 2147.4717797 ,
2187.95586832, 2505.19417937, 2729.14975288, 2908.4244449 ,
3034.24936155, 3113.23792305, 3148.959073 , 3149.01344238],
[1285.71428571, 1285.71428686, 1285.71440471, 1285.72617038,
1286.84986914, 1359.78761856, 1480.91665298, 1618.72961343,
1733.52304584, 1810.12997441, 1844.51567419, 1844.56643364],
[1000. , 1000. , 1000.00000004, 1000.00004033,
1000.03821936, 1022.64243623, 1116.4204006 , 1327.1016063 ,
1689.48149947, 2263.4913374 , 2943.38602418, 2945.04374286]1])

Plot the composition of stream G as well as the compositions and levels in all three tanks.

[29] : import matplotlib.pyplot as plt
$matplotlib inline

[30]: M1, M2, M3, Mlx1l, M2x2, M3x3 = sol.y

[31]: x1 = Mlx1/M1
X2 = M2x2/M2
X3 = M3x3/M3

V1l = M1*(x1/px + (1 - x1)/py)
V2 = M2* (x2/px + (1 - x2)/py)
V3 = M3*(x3/px + (1 - x3)/py)

hl = Vv1/Al
h2 = V2/A2
h3 = V3/A3

[32]: plt.plot(sol.t, hil,
sol.t, h2,
sol.t, h3)
plt.ylim(0, 2)
plt.legend(['Sh_1$', '$Sh_2$', 'S$h_3$'1)

[32]: <matplotlib.legend.Legend at 0x1519b93c50>

2.2. Time domain simulation 53

[33]:

[33]:

Dynamics and Control, Release 0.0.1

200
1
175 4 B
150 4 — hs
125 4 -
100 4
75 A
050
.25 4
I]Uﬂ T T T T T T
H 2 4 = 8 10
plt.plot(sol.t, x1,
sol.t, x2,
sol.t, x3)
plt.legend(['$x_15%", '$x_2$', '"$x_3$'])
<matplotlib.legend.Legend at 0x1519bf0el0>
0.8 1 ///
0.7 1
—_—
0.6 1 - -
— Jf: __________— e —
05{ __—
04 1
T T T T T T
0 2 4 = & 10
54 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

2.3 Linear systems

: import sympy

sympy.init_printing()

2.3.1 Valve equation

Let’s linearise the nasty nonlinear term in the equation percentage valve relationship in T4 Problem 4 (or T2 problem 4)
F=C,a"!
——
nonlinear

First we introduce the requisite symbols. Notice that we specify constraints on these variables, this will make simplifica-
tions better later on.

: C_v, alpha, x = sympy.symbols('C_v, alpha, x', positive=True)

: term = C_v*alpha**(x - 1)

We also introduce a barred versions of the variable. Sympy automatically constructs these to typesetting nicely.

: xbar = sympy.symbols ('xbar', positive=True)

For single variable expressions, we can use sympy . series to linearise for us. Note that he help for sympy . series
references the help for sympy .Expr.series, which has a lot more detail about the operation of this function

sympy.series?
sympy.Expr.series?

Calling series by itself will result in an error term (the one with an O). This is useful to estimate the error of the approx-
imation.

sympy.series (term, x, xbar, 2)

C, Z log () C, — 7) eZlog(a)
e n (x—1T)e og (@) n
o e

But mostly we will be interested in the expression rather than the error, so we will remove that term with the removeO
method:

lineg = sympy.series(term, x, xbar, 2).removeO ()
lineq

C,(z—1)e" log (o) log () N C,e®lo (a)
« «

2.3. Linear systems 55

[14]:

[15]:

Dynamics and Control, Release 0.0.1

Rewriting in terms of devation variables

While we are here, we can also rewrite in terms of deviation variables:

xprime = sympy.symbols ("x'", positive=True)

lineg _deviation = lineqg.subs({x: xprime + xbar})
lineg _deviation

Cvx/eg’c log (o) log (Oé) Cvezﬁ log ()
+

« «

2.3.2 A note about simplification

You will note that we specified positive=True for all our symbols when we created them. This is because the default
assumptions about variables in SymPy are that they are complex. And for complex numbers, 1 og is not a 1-to-1 function.
See if you understand the following:

xbar, alpha = sympy.symbols ('xbar, alpha')
sympy .exp (xbar*sympy.log(alpha)) .simplify ()

T log (o)

xbar, alpha = sympy.symbols ('xbar, alpha', positive=True)
sympy .exp (xbar*sympy.log(alpha)) .simplify ()

Oéi

Multiple variables

Unfortunately, SymPy doesn’t have a built-in function for multivariate Taylor series, and consecutive application of the
series function doesn’t do exactly what we want.

: variables = x, y, z = sympy.symbols('x, vy, z')
bars = xbar, ybar, zbar = sympy.symbols('xbar, ybar, zbar')
term = x*y*z

Note that the other variables are assumed to be constant here, so we don’t recover the answer we are looking for.

term.series (x, xbar, 2).removeO().series(y, ybar, 2).removeO ()

zyz +xz(y — 9)

The function tbcontrol.symbolic.linearise calculates a multivariable linearisation using the textbook for-
mula. Note that it does not handle expressions which include derivatives or equalities, so don’t try to pass a full equation,
just use it for the nonlinear terms.

56 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

: import tbcontrol.symbolic

: bars, linearexpression = tbcontrol.symbolic.linearise(term, variables)

linearexpression

Ty +zy (2 —2)+ 22 (y — 9) + 9z (v —)

2.3.3 Laplace transforms in SymPy

The Laplace transform is

C{f(t)) = / " ftyetds

: import sympy

sympy.init_printing /()

: import matplotlib.pyplot as plt

tmatplotlib inline

Let’s define some symbols to work with.

: t, s = sympy.symbols('t, s')
a

= sympy.symbols('a', real=True, positive=True)

Direct evaluation

We start with a simple function
f = sympy.exp(-a*t)
£

—at

@

We can evaluate the integral directly using integrate:

sympy.integrate (f*sympy.exp(-s*t), (t, 0, sympy.oo0))

ﬁ for |arg(s)| < &

o0
[e e stdt otherwise
0

w

2.3. Linear systems

57

Dynamics and Control, Release 0.0.1

: F
F

Library function

This works, but it is a bit cumbersome to have all the extra stuff in there.

Sympy provides a function called laplace_transform which does this more efficiently. By default it will return
conditions of convergence as well (recall this is an improper integral, with an infinite bound, so it will not always converge).

sympy.laplace_transform(f, t, s)

1
(, —a, True)
a+s

If we want just the function, we can specify noconds=True.

= sympy.laplace_transform(f, t, s, noconds=True)

1
a+s

We will find it useful to define a quicker version of this:

: def L(f):

return sympy.laplace_transform(f, t, s, noconds=True)

Inverses are simple as well,

: def invL (F) :

return sympy.inverse_laplace_transform(F, s, t)

invL (F)

1 e (t)

What is that 6?

The unit step function is also known as the Heaviside step function. We will see this function often in inverse laplace

transforms. It is typeset as 6(¢) by sympy.

sympy .Heaviside (t)

]1: 9(0

sympy.plot (sympy.Heaviside (t));

58

Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

1.0

0.8 1

0.6 1

ft)

0.4 1

0.2 4

[«2)
[a3)

—10.0 -7.5 -5.0 -2.5 “olo 2.5 5.0 1.5 10.0

Look at the difference between f and the inverse laplace transform we obtained, which contains the unit step to force it
to zero before ¢ = 0.

[13]: invL(F) .subs ({a: 2})

[131: e 20 (1)

[14]: p = sympy.plot (f.subs({a: 2}), invL(F) .subs({a: 2}),
x1lim=(-1, 4), ylim=(0, 3), show=False)

pll].line_color = 'red'
p.show ()

2.3. Linear systems 59

[15]:

Dynamics and Control, Release 0.0.1

0.5 1

Reproducing standard transform table

Let’s see if we can match the functions in the table

omega = sympy.Symbol ('omega', real=True)
exp = Sympy.exp
sin = sympy.sin
cCOos = sSympy.cos
functions = [1,
tl
exp (-a*t),
t*exp(-a*t),
tA*2*exp (=a*t),
sin (omega*t),
cos (omega*t),
1 - exp(-a*t),
exp (-a*t) *sin (omega*t),
exp (—a*t) *cos (omega*t),
]

functions

[1, t, e™®, te™™, t?e*, sin(wt), cos (wt), 1 — e~ ™, e~ *sin(wt), e~ cos (wt)]

60

Chapter 2. Dynamics

[17]:

[18]:

Dynamics and Control, Release 0.0.1

: Fs = [L(f) for f in functions]
Fs
1 1 1 1 2 w s 1 1 w a+s

))) ’ ’) s +7,)
s’ s a+s’ (a+s) (a+s)’ WwrHs? wits? ats st W24 (a+s) W24 (a+s)

We can make a pretty good approximation of the table with a little help from pandas

from pandas import DataFrame

def makelatex (args):
return ["$5{}S$S".format (sympy.latex(a)) for a in args]

: DataFrame (list (zip (makelatex (functions), makelatex (Fs))))

0 \

0 $$15$
1 $$tSS
2 SSe™{- a t}s$$
3 $St en{- a t}$s
4 St {2} en{- a t}$$
5 $$\sin{\left (\omega t \right) }$$
6 $$\cos{\left (\omega t \right) }$$
7 $S1 - e™{- a t}s$$
8 Se”{- a t} \sin{\left (\omega t \right) }$$
9 $S%e{- a t} \cos{\left (\omega t \right) }$$

1
0 $S\frac{1}{s}$s
1 $S\frac{l}{s"{2}}$$
2 $S\frac{1l}{a + s}$$
3 $S\frac{l}{\left (a + s\right)~{2}}$$
4 S$SS\frac{2}{\left (a + s\right)~{3}}S$$
5 $S\frac{\omega}{\omega~{2} + s~{2}}$S
6 S$\frac{s}{\omega™{2} + s"~{2}}$$
7 $$— \frac{l}{a + s} + \frac{1l}{s}$$
8 SS\frac{\omegal}{\omega~{2} + \left(a + s\right..
9 S\frac{a + s}t{\omega™~{2} + \left(a + s\right)..

More complicated inverses

Why doesn’t the table feature more complicated functions? Because higher-order rational functions can be written as
sums of simpler ones through application of partial fractions expansion.

:F = ((s + 1)*(s + 2)* (s + 3))/((s + 4)*(s + 5)*(s + 6))

2.3. Linear systems 61

Dynamics and Control, Release 0.0.1

In most cases, sympy will be able to figure out how to do the right thing with most of the functions we use, even the hard
ones. Notice the relationship between this inverse Laplace and the expression we obtained above:

: invL (F)

12 6 (t) —3e0 (t) + 24e "0 (t) — 307510 (1)

2.3.4 Convolution and transfer functions

So far, we have calculated the response of systems by finding the Laplace transforms of the input and the system (transfer
function), multiplying them and then finding the inverse Laplace transform of the result.

(1 system - r
() —>| 8(1) G(s) [)
U(s) Y (s)

We have been using the idea that, with the nomenclature of the diagram shown above,

But, if we follow the nomenclature, then L{u(¢)} = U(s) and L{y(¢)} = Y(s) and similarly there is some g(¢) such that
L{g(t)} = G(s). So far we have not really used g(¢) explicitly, but we know that the time-domain version of equation
1 is given by

y(t) = (g xu)(t)

where * denotes convolution, which is defined by the following integral:

(gxu)(t) = /00 g(T)u(t —7)dr = / u(r)g(t —7)dr

—o00 J —oo

Since we are primarily concerned with functions where both g(¢) = 0 and u(¢) = 0 for ¢ < 0, the integral bounds can
be written as

(gxu)(t) = /0 g(T)u(t —7)dr = /0 u(r)g(t —7)dr

This gives us a whole new way to think about the response of a system to an input. Let’s revisit the first order step response
by thinking about convolution.

]: import sympy

sympy.init_printing/()
$matplotlib inline

]: s = sympy.Symbol('s")

t = sympy.Symbol('t', real=True)
tau = sympy.Symbol ('tau', real=True, positive=True)

62 Chapter 2. Dynamics

https://en.wikipedia.org/wiki/Convolution

i g
g

Dynamics and Control, Release 0.0.1

We start by considering the first order transfer function:

: G = 1/ (tau*s + 1)

We can interpret g(t) as the impulse response of the system, since £{(¢t)} = 1 (in words, the Laplace transform of the
Dirac delta is one). So, if u(t) = 6(t), then U(s) = 1, so Y'(s) = G(s) and therefore y(t) = g(t).

This is what the impulse response of the first order system looks like with 7 = 1:

= sympy.inverse_laplace_transform(G.subs ({tau: 1}), s, t)

1 e ()

¢ sympy.plot (g, (t, -1, 10))

=10,
\
08 |
06
0.4
02
- —
0 2 4 6 B 10

]: <sympy.plotting.plot.Plot at 0x12024cel0>

G(s)

Earlier, we calculated the step response of the system by calculating U(s) = I, therefore Y (s) = =:*! and then calcu-

lating the inverse Laplace:

: stepresponse = sympy.inverse_laplace_transform(G.subs ({tau: 1})/s, s, t)

stepresponse

15 0(t)—e 0 (t)

: sympy.plot (stepresponse, (t, -1, 10), ylim=(0, 1.1))

2.3. Linear systems 63

Dynamics and Control, Release 0.0.1

=
10 - —
0.E
0.6
0.4 - /
02 4
) 7 Z ; ; oo

<sympy.plotting.plot.Plot at 0x1209f5748>

We can get the same result by convolving the unit step function with the impulse response. Sympy doesn’t handle the

improper integral correctly here (as of the below version number):

sympy.__version

'1.4"

: u = sympy.Heaviside (t)

: product = g.subs({t: tau})*u.subs({t: t - tau})

sympy.integrate (product, (tau, —-sympy.o00, Sympy.o0o0))

1. OQ

But it does appear to work for the rewritten integral bounds:

sympy.integrate (product, (tau, 0, t))
—(—1+e)0

Numeric convolution

sympy cannot evaluate the convolution integral for all impulse response functions, so it is often useful to do the convolution

numerically.
The numpy . convolve function calculates the discrete convolution, that is

o0

(gxw)n]= Y glmluln—m]

m=—0o0

Let’s compare that to the continuous convolution integral:

(gMMﬂ/mgWM@fﬂw

— 00

64 Chapter 2.

Dynamics

Dynamics and Control, Release 0.0.1

If we discretize this integral to a Riemann sum with a discrete time step At, we obtain

:nbsphinx-math: begin{align} (g*u)(nDelta t) &approx sum_{m = -infty}"{infty} g(mDelta t) u(nDelta t - mDelta t)
Delta t\

&= sum_{m = -infty }*{infty} g[m] u[n - m] Delta t \ &= (g*u)[n] Delta t \
end{align}"
[13]: import numpy

import matplotlib.pyplot as plt

[14]: ts
At

numpy.linspace (0, 10, 200)
ts[1] # space between timesteps

We evaluate the impulse response:

[15]: gt = numpy.exp(-ts)

[16]: ut = numpy.ones_like (ts)

[17]: plt.plot(ts, ut, ts, gt)
plt.ylim(ymax=1.1)

[17]: (—0.04995233007374939, 1.1)

104

0.5 4

06 4

04

0.2

0.0 4

Also notice that the default behaviour is for the convolution to be calculated over a larger time then originally, so this
contains the step response up and down

[18]: full_convolution = numpy.convolve (gt, ut)
plt.plot (full_convolution)

[18]: [<matplotlib.lines.Line2D at 0x120ed6eb8>]

2.3. Linear systems 65

https://en.wikipedia.org/wiki/Riemann_sum

Dynamics and Control, Release 0.0.1

20.0 1
17.5 A
15.0 A
12.5 A
10.0 1
751

5.0

25 1

00

50 100 150 200 250 300 350 400

(=T

To get the correct integral and just the first part, we can do this:

[19]: yt = full_convolution[:len(ts)]*At

[20]: plt.plot(ts, yt)

[20]: [<matplotlib.lines.Line2D at 0x120faal60>]

104

0.8 4

0.6

04+

02

& i 10

=
(g %]
=%

Notice that this allows us to calculate the response of a system to an arbitrarily complex input numerically. It also gives
us a whole new way to think about how a system will behave by thinking about what its impulse response looks like.

66 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

2.3.5 Visualising complex functions
One-dimensional functions

Consider a “normal” plot of sin(¢):

: import sympy

sympy.init_printing/()

smatplotlib inline

: t = sympy.Symbol ('t")

sympy.plot (sympy.sin(t))

= 100 -
075

0.50

—-10. =15 5.0 25 0 25 50

: <sympy.plotting.plot.Plot at 0x10£372470>

This allows us to see exactly what the of sin(t) is for every value of ¢. To do this, we need two dimensions: one for the

value of ¢ and one for sin(¢).

If we want to plot a function of two variables we start needing three dimensions. The following plot shows a “fake” 3d
plot. It’s fake because in fact there are only two dimensions available on your computer screen. So we're already in a bit
of trouble when trying to visualise the relationships represented by higher dimensional functions.

: X, vy = sympy.symbols('x, vy'")

f2 = sympy.sin(x) + sympy.cos(y)

sympy.plotting.plot3d(£2)

2.3. Linear systems

67

Dynamics and Control, Release 0.0.1

[6]: <sympy.plotting.plot.Plot at 0x1113c2320>

We can make up for some of this lack by using colors to represent another axis.

[7]: import numpy
import matplotlib.pyplot as plt

[8]: f2numeric = sympy.lambdify((x, y), £2, 'numpy')
[9]: xx, yy = numpy.mgrid[-10:10:0.1, -10:10:0.1]
[10]: zz = f2numeric(xx, VyVy)

[11]: plt.pcolor (xx, VY, 2zz)

[11]: <matplotlib.collections.PolyCollection at 0x111922550>

75
50
25

00

-10.0
-100 -75% -0 -Z5 00 25 5.0 15

For transfer functions, we have an even bigger challenge, because we have two input variables (the real and imaginary
part of s) and two output variables (the real and imaginary part of G(s)). One solution to the problem is to use colors for
ZG(s) and brightness for |G(s)|. This is known as domain colouring and is supplied by mpmath.cplot.

68 Chapter 2. Dynamics

https://en.wikipedia.org/wiki/Domain_coloring

Dynamics and Control, Release 0.0.1

[12]: try:
import mpmath
except :
from sympy import mpmath

[N
w
]

|

= sympy.Symbol ('s")

G=1/(s**2 + s + 1)
Gnumeric = sympy.lambdify (s, G)
mpmath.cplot (Gnumeric)

Imifz)

-4 —2 0 2 4
Re(z)

We can get a smoother result by plotting with more points

[14]: mpmath.cplot (Gnumeric, points=10000)

Imi{z}

-4 —2 0 2 4
Re(z)

The roots of the denominator appear as two bright regions.

Another solution is to plot the image of G(s) as s goes through a particular path. We will speak more of this when we
cover the frequency domain, but have a look at this example. We generate values of s in a circle of diameter 1 (radius
0.5) around the origin, then plot G(s) for all these s values. This is known as the image of G/(s) for these values of s.

2.3. Linear systems 69

[16]:

Dynamics and Control, Release 0.0.1

: theta = numpy.linspace (0, 2*numpy.pi)
s = 0.5* (numpy.cos (theta) + numpy.sin(theta)*1j) # The circle with radius 0.5

lt

Gs = Gnumeric(s)

plt.plot (s.real, s.imagqg)
plt.plot (Gs.real, Gs.imag)
plt.axis('equal');

06
0.4 -

0.2 .
0.0 { <
-0.2 - '
-0.4 -

—0.6

—050 -025 000 025 050 075 100 125 150

2.4 First and second order system Dynamics

2.4.1 Standard process inputs

: import sympy

import matplotlib.pyplot as plt
sympy.init_printing/()
%matplotlib inline

Step

A step input of magnitude M can be written as

0 t<o0,
us®=93 10

Sympy supplies a unit step function called Heaviside, which is typeset as 0(t)

angles around the circle

= sympy.symbols ('t")
S = sympy.Heaviside
70 Chapter 2. Dynamics

[5]:

[107]:

Dynamics and Control, Release 0.0.1

sympy.plot (M*S(t))

it}

200

175

150

125

100

075

050

025

fa et
i

o T T

100 -75 -50 -25 00 25 50

<sympy.plotting.plot.Plot at 0x1178f46a0>

Laplace transform

Sympy can calculate laplace transforms of the step easily:

: M, s = sympy.symbols('M, s'")

. def L(f):

5 10.0

return sympy.laplace_transform(f, t, s, noconds=True)

def invL(F):

return sympy.inverse_laplace_transform(F, s, t)

: L(M*S(t))

Scaling and translation

We can scale and translate the step function in the normal way. Notice that how the time translation is handled.

from ipywidgets import interact

def translated_step(scale, y_translation,

M
S

t_translation):

f = scale*S(t - t_translation) + y_translation

print ("f =", £, " \u2112(f) =", L(f))
sympy.plot (£, (t, -10, 10), ylim=(-2,

4))

2.4. First and second order system Dynamics

71

[117]:

[14]:

[14]:

: h, t_w

Dynamics and Control, Release 0.0.1

interact (translated_step,
scale=(0.5, 3.),
y_translation=(-1., 1.),
t_translation=(0., 5.));

interactive (children=(FloatSlider (value=1.75, description='scale',

—~FloatSlider (value=0.0, d..

Rectangular pulse

It is now easy to see how we can construct a rectangular pulse, of height ~ and width ¢,,,

0 t<0,
’uRp(t) =qh 0<t<ty,
0 t>t,

by using shifted versions of the step, so that

= sympy.symbols ('h, t_w'")
u_RP = h*(s(t — 0) - S(t - t_w))

sympy.plot (u_RP.subs ({h: 1, t_w: 2}), (t, -1, 3));

it}

10

0.8

0o

0.4

0.2

ot
Ly

10 -05 00 05 10 15 20 25 30

L (u_RP)

max=3.0, min=0.5), .

72

Chapter 2. Dynamics

[15]:

[18]:

Dynamics and Control, Release 0.0.1

Arbitrary piecewise constant functions

We can constuct any piecewise constant function by adding together step functions shifted in time. As an example, we
can take the function represented below:

x = [-1, 0, O, 1, 1, 2, 2, 3]

y = [0, O, 1, 1, 2, 2, 0, O]
: plt.plot (x, Vy)

plt.text (0, 0.5, r'$\Delta_1=1S$")
plt.text (1, 1.5, r'$\Delta_2=1$")
plt.text (2, 1, r's$\Delta_3=-2S"')

plt.text (0, 0.1, r'S$SD_1=0$")

plt.text (1, 0.1, r'SD_2=1%")

plt.text (2, 0.1, r'SD_3=2%")
: Text (2,0.1,'$D_3=2$")

200 1

175 -

150 fe=1

125 1

100 - fs = -2

0.75 1

0.50 Ao =1

0.25 1

.|:|:|_=|::I .D2=1 .D3=2
0.00 1

10 —05 00 05 10 15 20 25 30

In general piecewise constant functions like the one above can be written as

Ng
fot) =Y AS(t— D)
i=1
where S is the unit step. We calculate A; as the difference between the values at the discontinuities, positive if the function
is rising and negative if it is falling. D, is the time at which the value changes and N, is the number of discontinuities.

We can apply this directly for the example function.

f = 1*S(t) + 1*S(t-1) - 2*S(t-2)
£

O(t)—20(t—2)+6(t—1)

Or a little more generally using some code:

Delta = [1/ 11 72]
D = [0, 1, 2]
Nd = len (Delta)

2.4. First and second order system Dynamics 73

[24]:

Dynamics and Control, Release 0.0.1

. £ =

sum(Delta[i]*S(t - D[i]) for i in range (Nd))

0(t)—20(t—2)+0(t—1)

Let’s verify it works properly:

: sympy.plot (£, (t, -1, 3));
= 200
175 1
150 -
125 -
100
0.75
0.50
0.25
-10 -05 00 ©5 10 15 20 25 30
t
: sympy.expand (L (f))
}7 e ’® __26—23
s s s
Ramp
A ramp with slope a can be written as
0 t<O0,
UR t) =
®) {a t>0

We can construct a unit (¢ = 1) ramp by simply multiplying the unit step by ¢

: def R(t):

return t*S (t)

sympy .plot (R(t))

74

Chapter 2.

Dynamics

el

Dynamics and Control, Release 0.0.1

fit)

10 4

0
L= T T T 1

100 -75 -50 -25 00 25 50 75 100

]: <sympy.plotting.plot.Plot at 0x11a539198>

: L(R(t))

Continuous piecewise linear functions
We can build any continuous piecewise linear function by using shifted and scaled ramps.
Ns
f#)=>_Am;R(t - D)
i=1
This time Am; represents changes in slopes (m = ﬁ—z). D, ; are the times at which the slopes change and [V is the

number of slope changes.

For instance, we can construct a triangular pulse by adding three ramps together.

= t*S(t - 0)
r2 = -2*(t - t_w/2)*S(t - t_w/2)
r3 = (t - t_w)*S(t - t_w)

u TP = 2/t_w*(rl + r2 + r3)

% (te(t) + (=2t +t,)0 (t— t;) + (t—tw)H(t—tw)>

: sympy.plot (u_TP.subs ({t_w: 2}), (t, -1, 4))

2.4. First and second order system Dynamics 75

Dynamics and Control, Release 0.0.1

fit)

10 1

08 -

06 1

04 -

02 1

el
[]

<sympy.plotting.plot.Plot at 0x1la6de550>

: L(u_TP.subs ({t_w: 2})) .expand()

Notice that there are three ramps here (one may have expected only two). It becomes more clear when we think about
the derivative of this function:

sympy.plot (u_TP.diff (t) .subs ({t_w: 2}), (t, -1, 4), ylim=(-1.1, 1.1))

fit)

100
075

050

—-0.50 A

=075 A1

-1.00 -

<sympy.plotting.plot.Plot at 0x11c5a5710>

We now see that the derivative of a piecewise linear continuous function is a piecewise constant function. We can apply
our rule for piecewise constant functions and integrate the steps to ramps:

: derivative = 1*S(t-0) — 2*S(t-1) + 1*S(t—-2)

final = 1*R(t-0) - 2*R(t-1) + 1*R(t-2)

76 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

Arbitrary piecewise linear functions

We can construct any piecewise linear function by adding together ramp functions and steps shifted in time. The general
rule now becomes

N Ny
F(O) = AmiR(t = Do)+ Y AiS(t — D)
=1 i=1

slope changes discontinuities

[33]:

X
Il
|
[N
~
o
~
N
~
N
~
w
~
sy
~
&

[34]: plt.plot(x, y)

[34]: [<matplotlib.lines.Line2D at 0x11ac04d30>]

200 A

175 A

150

125 A

100

075

050 1

025 1

0.00 4

-1 0 1 2 3 4 5

We see that there are 4 slope changes (at t=0, t=2, t=3 and t=4) and 1 discontinuity. Applying our formula yields:

[35]: g = 0.5*R(t) — 0.5*R(t-2) - 2*R(t-3) + 2*R(t - 4) + S(t - 2)

[36]: sympy.plot (g, (t, -1, 5));

2.4. First and second order system Dynamics 77

Dynamics and Control, Release 0.0.1

c G

fie)

200 1

175

150 4

125 A

100 A

0.75 1

0.50 1

0.25 1

]

sympy .expand (L (g))

S

L0 30, 05 05 5 20 4 20
S

+ 726745
S

2.4.2 First order systems

: import sympy

import matplotlib.pyplot as plt
import numpy
sympy.init_printing/()
%matplotlib inline

: t, K, tau = sympy.symbols('t, K, tau',real=True, positive=True)

s = sympy.Symbol ('s")

: u = sympy.Heaviside (t)

: def L(f):

return sympy.laplace_transform(f, t, s, noconds=True)
def invL(F):
return sympy.inverse_laplace_transform(F, s, t)

= L(u)

[

All first order linear differential equations with constant coefficients can be rewritten in the following form:

3—? = ay(t) + bu(t)

Where y is the output and « is the input or forcing function.

78 Chapter 2. Dynamics

[10]:

[117:

[12]:

: G
G

Dynamics and Control, Release 0.0.1

If we Laplace transform this, we end up with

d
c {d?;} = L{ay(t) + bu(t)} 2.17)
sy(s) = ay(s) + bu(s) (2.18)
b
s) = u(s 2.19
y(s) = —uls) (2.19)
(2.20)
By convention, we usually rewrite the above in the following form, for reasons which will become apparent soon:
= K/ (tau*s + 1)
K
sT+1
The inverse laplace of a transfer function is its impulse response
: impulseresponse = invL (G)
impulseresponse
K .
eTF
-
If u(t) is the unit step function, U(s) = 1 and we can obtain the step response as follows:
:u = 1/s
stepresponse = invL(G*u)
stepresponse
_t
K—-Ke -
Ramp response:
u = 1/s**2
rampresponse = invL(G*u)
rampresponse
Kt — K7+ Kre =
from ipywidgets import interact
evalfimpulse = sympy.lambdify ((K, tau, t), impulseresponse, 'numpy')
evalfstep = sympy.lambdify ((K, tau, t), stepresponse, 'numpy')
evalframp = sympy.lambdify ((K, tau, t), rampresponse, 'numpy')
2.4. First and second order system Dynamics 79

Dynamics and Control, Release 0.0.1

[13]: ts = numpy.linspace (0, 10)

def firstorder (tau_in, K_in):
plt.figure (figsize=(12, 6))
ax_impulse = plt.subplot2grid((2, 2), (0, 0))
ax_step = plt.subplot2grid((2, 2), (1, 0))
ax_complex = plt.subplot2grid((2, 2), (0, 1), rowspan=2)

ax_impulse.plot (ts, evalfimpulse (K_in, tau_in, ts))
ax_impulse.set_title('Impulse response')
ax_impulse.set_ylim (0, 10)

tau_height = 1 - numpy.exp(-1)

ax_step.set_title('Step response')

ax_step.plot (ts, evalfstep(K_in, tau_in, ts))

ax_step.axhline (K_in)

ax_step.plot ([0, tau_in, tau_in], [K_in*tau_height]*2 + [0], alpha=0.4)
ax_step.text (0, K_in, '$K=S${}'.format (K_in))

ax_step.text (0, K_in*tau_height, '{:.3}K'.format (tau_height))
ax_step.text (tau_in, 0, r'S$\tau={:.3}$'.format (tau_in))
ax_step.set_ylim(0, 10)

ax_complex.set_title('Poles plot'")
ax_complex.scatter (-1/tau_in, 0, marker='x', s=30)
ax_complex.axhline (0, color='black")
ax_complex.axvline (0, color='black")
ax_complex.axis([-10, 10, -10, 10])

[14]: firstorder(l., 10.)

Impulse response Poles plot
10 P P 10.0 P
B-
7.5 1
E-
2l 5.0 1
2' 2_5_
°3 ; A ; ' e
Step response 0.0
10 —K=100 presp
8- -2.5 A
0.63
E-
5'}_
4
_?_5_
2_
o | T=1I|]' : . . : -10.0 T T T T
2 4 B B 10 =100 75 -50 -25 0.0 25 5.0 15 10.0

[15]: interact (firstorder, tau_in=(0.1, 10.), K_in=(0.1, 10.));

interactive (children=(FloatSlider (value=5.05, description='tau_in', max=10.0, min=0.
1), FloatSlider (value=5.05..

80 Chapter 2. Dynamics

[16]:

Dynamics and Control, Release 0.0.1

Exploration of the above interaction allows us to see the following:
* K scales the response in the y direction
* 7 scales the response in the ¢ direction
* The response of the system is always 0.63K whent = 7
We get the “magic number” 0.63 by substituting ¢ = 7 into the response:

sympy .N ((stepresponse.subs (t, tau)/K).simplify())

0.632120558828558

: import sympy

import matplotlib.pyplot as plt
import numpy
sympy.init_printing()
$matplotlib inline

: tau, zeta, t, w, K = sympy.symbols('tau, zeta, t, w, K', real=True, positive=True)

s = sympy.Symbol ('s")

: def L(f):

return sympy.laplace_transform(f, t, s, noconds=True)
def invL(F):
return sympy.inverse_laplace_transform(F, s, t)

This is the standard form for the second order system transfer function

|G = K/ (tau**2*s**2 + 2*tau*zeta*s + 1)
G

K
212 +2s7¢C+ 1

In recent versions of Sympy, we can solve for the step response directly.

sympy.__version_

'1.1.1°

invL(G/s)

Ke™ ™~ i $MCOS(%atanz(0,(—l))m- <t 1si (1 0.¢ —
2(—<+\/<f1\/<+*1)2(<+m\ﬁ<+1)2¢<2*—1< e sin{ Ve boin (g aan (0.6

That’s a really hairy expression, so let’s try to simplify.

The characteristic equation is the denominator of the transfer function

ce = sympy.Eg(sympy.denom(G), 0)
ce

2.4. First and second order system Dynamics 81

[11]:

[12]:

Dynamics and Control, Release 0.0.1

212 +257¢C+1=0

: roots = sympy.roots(ce, s)

roots

{i (~¢-VE=1VC+T) 11, %(—C+\/C—71\/m> :1}

The shape of the inverse Laplace depends on the nature of the roots, which depends on the value of

Overdamped: ¢ > 1. Two distinct real roots

: invL(G.subs ({zeta: 7})) .simplify () .expand()

\/gK(f%(z%\/g — 7\/§K67¥67%\/§

241 241

Critically damped: (= 1. Repeated roots.

: invL(G.subs ({zeta: 1}))

Underdamped: 0 < ¢ < 1: a complex conjugate pair of roots
= invL (G.subs ({zeta: 0.7}))

r
r

T

T T

1.40028008402801K _o.z¢ i <0.714142842854285t)
e

We can get prettier results if we use Rat ionals instead of floats

r = invL(G.subs ({zeta: sympy.Rational (1, 2)1}))
r

e 27
3T

2V3K _ sin <\/§t>
2T

: from ipywidgets import interact

: def secondorder (K_in, tau_in, zeta_in, tmax):

values = {K: sympy.nsimplify(K_in), tau: sympy.nsimplify(tau_in), zeta: sympy.
—nsimplify (zeta_in)}
stepresponse = sympy.re (invL(G.subs (values)/s))

sympy.plot (stepresponse, (t, 0, tmax), ylim = [0, 10])

82 Chapter 2. Dynamics

[15]:

[25]:

[26] :

[27]:

[28]:

[29]:

[35]:

Dynamics and Control, Release 0.0.1

interact (secondorder, K_in=(0, 10.), tau_in=(0., 10.), zeta_in=(0., 2), tmax=(30.

—100));

interactive (children=(FloatSlider (value=5.0, description='K_in', max=10.0),_
—~FloatSlider (value=5.0, description..

import sympy
sympy.init_printing/()
$matplotlib inline

2.4.3 Sinusoidal response

14

In this notebook we will look at the response of first and second order systems to sinusoidal inputs. Recall that we always

assume inputs were zero for times less than zero, so in fact the input looks like this:

0 t<0

sin(l) =
Usin(?) Asin(wt) t>0

We will define our symbols in such a way that the positive ¢ is assumed and Sympy will do the math correctly.

: A, t, omega = sympy.symbols('A, t, omega', positive=True)
S

= sympy.Symbol ('s")

So we can define our input like this and get the same Laplace transform as in our table of standard transforms:

usin = A*sympy.sin (t*omega)
usin_s = sympy.laplace_transform(usin, t, s, noconds=True)
usin_s
Aw
w? + 52
First order

Let’s explore how first order systems respond to this kind of input:

K, tau = sympy.symbols ('K, tau', positive=True)
G = K/ (tau*s + 1)

y = G*usin_s

yt = sympy.inverse_laplace_transform(y, s, t)
vyt

2.4. First and second order system Dynamics

83

[38]:

[39]:

[40] :

Dynamics and Control, Release 0.0.1

t

AKe™ =
(iwr — 1)? (iwr + 1)

5 (W% +1) (—wTeé cos (wt) 4+ wr + e~ sin (Wt))

vyt = yt.simplify () .expand()
vyt

B AKwre~ cos (wt) AKwTt AKe+ sin (wt)

t t t t t t
w?r2eT 4 €7 wlr2er + 67 w?7?er +ex

def response(omega_, A_, tau_, K_):
sympy.plot (usin.subs ({omega: omega_, A: A_}),
yt.subs ({A: A_, tau: tau_, K: K_, omega: omega_}),
(t, 0, 30), ylim=(-2, 2))

from ipywidgets import interact

interact (response,
omega_=(0.1, 10.),
A_=(0.1, 2.),
tau_=(0.1, 10.),

K =(-0.1, 2.))

interactive (children=(FloatSlider (value=5.05, description='omega_"', max=10.0,

1), FloatSlider (value=1.05..

<function __main__.response(omega_, A_, tau_, K_)>

We see the response is eventually sinusoidal.

Second order sinusoidal response
zeta = sympy.Symbol ('zeta', positive=True)

G2 = K/ (tau**2*s**2 + 2*tau*zeta*s + 1)
G2

K
s272 4+ 257C + 1

Sympy can calculate this response analytically.

Warning: This next cell takes quite a long time.

yt = sympy.inverse_laplace_transform(G2*usin_s, s, t)

def response(omega_, A_, K_, tau_, zeta_):
sympy.plot (usin.subs ({omega: omega_, A: A_}),

yt.subs ({A: A_, tau: tau_, K: K_, zeta: zeta_, omega: omega_}),

(¢, 0, 20), ylim:(_Zr 2))

84 Chapter 2. Dynamics

[18]:

Dynamics and Control, Release 0.0.1

interact (response,
omega_=(0.1, 10.),
A_=(0.1, 2.),
tau_=(0.1, 10.),
K _=(-0.1, 2.),
zeta_=(0.1, 1.2))

interactive (children=(FloatSlider (value=5.05, description='omega_', max=10.0, min=0.
—1), FloatSlider (value=1.05..

<function main .response (omega_, A_, K_, tau_, zeta_)>

Again we see that the response is eventually sinusoidal, with a longer transient. Unlike the first order system, there are
frequencies where the output is larger than the input when the system is underdamped. This is known as a harmonic
response:

response (0.5, 1, 1, 1.1, 0.4)

fit)

154

104

05 A

00 T T T T T |
00 25 50 7 10.0 5 150 175 wt.ﬂ

=1.0 A

-1.5 -

Amplitude over frequency

It can be shown (unfortunately SymPy is not quite up to the task) that for first order processes, the eventual magnitude of
the sinusoidal responses are as follows:

First order processes

KA

w22 +1

Second order processes

KA
V(1= w?72)2 + (2¢wr)?

It is useful to plot the normalised amplitude ratio (the above amplitudes divided by K A) of the two systems as a function
of frequency:

2.4. First and second order system Dynamics 85

[217:

[21]:

[22] :

[23]:

Dynamics and Control, Release 0.0.1

firstorder = 1/sympy.sqgrt (omega**2*tau**2 + 1)
secondorder = 1/sympy.sqgrt ((1 - omega**2*tau**2)**2 + (2*zeta*omega*tau)**2)

: def frequencyplot (tau_, zeta_):

sympy.plot (firstorder.subs ({tau: tau_}),
secondorder.subs ({tau: tau_, zeta: zeta_}),
(omega, 0.1, 10),
xscale="'log',
)

interact (frequencyplot, tau_=(0.01, 4), zeta_=(0.1, 1.2))

interactive (children=(FloatSlider (value=2.005, description='tau_', max=4.0, min=0.01),
— FloatSlider (value=0.6409..

<function __main__.frequencyplot (tau_, zeta_)>

It is clear that the value of 7 determines the frequency of the peak in the second order plot. This peak is known as the
“harmonic nose” and is only larger than 1 when 0 < ¢ < 0.7.

frequencyplot (1, 0.7)

o
=]
L]
E 10 -
0.6
0.4 1
0.2 1
Fa il B —
T [y 1
10-! 10° 10
omega

frequencyplot (1, 0.6)

86 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

T
1wt 1° 1t

ega)

fi
f=]

0.6 1

04

ol
L]

omega

2.5 Complex system dynamics

2.5.1 Random response generator

This sheet will generate random systems and show their step responses. See if you can predict the responses from the
transfer functions and the poles and zeros.

This notebook assumes version 0.8.0 of the control library or better

import control

import numpy

import matplotlib.pyplot as plt
smatplotlib inline

: def viz (order):

Not all random transfer functions work, so we generate one
and try to calculate the step response, only continuing when it works
valid = False
while not wvalid:
coeffs = (numpy.random.random(order)*3).tolist () + [1]
G = control.tf(l, coeffs)

try:
t, y = control.step_response (G)
valid = True

except ValueError:
continue

fig, [ax_complex, ax_time] = plt.subplots(l, 2, figsize=(10, 5))

(continues on next page)

2.5.

Complex system dynamics 87

Dynamics and Control, Release 0.0.1

(continued from previous page)

plt.sca(ax_complex)
control.pzmap (G)
ax_complex.axis ('equal')
ax_complex.axis([-5, 5, -5, 51])
ax_complex.grid()
ax_time.plot (t, vy)
ax_time.axhline (1)

from ipywidgets import interact

interact (viz, order=(1, 5))

interactive (children=(IntSlider (value=3, description='order', max=5, min=1),.
—QOutput ()), _dom_classes=('widget-..

<function _ main__ .viz (order)>

2.5.2 Simulation of arbitrary transfer functions

In some cases we can calculate the response of a system to an input completely analytically using Sympy as discussed
in other notebooks. Sometimes these methods are not sufficient as they fail to calculate the inverse or because we have
different inputs. This notebook covers several methods of simulating systems of arbitrary complexity.

: import numpy

import matplotlib.pyplot as plt
$matplotlib inline

Convert to ODE and integrate manually

We are very familiar with the Euler integration method by now. Let’s recap a quick simulation of a first-order system

_y(s) K

u(s) 71s+1
We can rewrite this in the time domain as
y(s)(rs +1) = Ku(s)

dy

— t) = Ku(t
L y(t) = Ku(t
dy 1 K
— = ——y(t) + —ult
Y)+ ~ut)
: K =1
tau = 5

This is our input function. Note that it could be anything (not just a step)

: def u(t):

if t<1:
return 0
else:
return 1

88 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

[4]: ts = numpy.linspace (0, 20, 1000)

dt = ts[1]
y =0
ys = []
for t in ts:
dydt = -1/tau*y + 1/tau*u(t)

y += dydt*dt
ys.append (y)

[5]: plt.plot(ts, ys)

[5]: [<matplotlib.lines.Line2D at 0x231e91dleb0>]

104

0.5

06 4

04

02 A

00 4

00 25 50 75 100 125 150 175 200

LTI support in scipy.signal

Notice in the previous code that all the differential equations were linear and that that none of the coefficients of the
variables change over time. Such a system is known as a Linear, Time Invariant (LTI) system. The scipy.signal
module supplies many functions for dealing with LTI systems

[6]: import scipy.signal

We define an LTI system by passing the coefficients of the numerator and denominator to the 1t i constructor

[7]: numerator = K
denominator = [tau, 1]
G = scipy.signal.lti (numerator, denominator)

[8]: G

[8]: TransferFunctionContinuous (
array ([0.2]),
array([1. , 0.21),
dt: None
)

[9]: type(G)

2.5. Complex system dynamics 89

[10]:

[117:

[12]:

Dynamics and Control, Release 0.0.1

scipy.signal.ltisys.TransferFunctionContinuous

Step responses

We can obtain the step response of the system by using the st ep method of the object

def plotstep (G) :
_, ys_step = G.step(T=ts)
plt.plot (ts, ys_step);

plotstep (G)

104

05

06

04

0z

00

00 25 50 75 100 1@5 150 175 200

Responses to arbitrary inputs

We can also find the response of the system to an arbitrary input signal by using scipy.signal.lsim(). Thisis

useful when simulating a complicated response or a response to an input read from a file.

plt.legend(['Euler', 'lsim'])

<matplotlib.legend.Legend at 0x231lea2517c0>

:us = [u(t) for t in ts] # evaluate the input function at all the times
_, ys_1lsim, xs = scipy.signal.lsim(G, U=us, T=ts)
plt.plot(ts, ys)
plt.plot(ts, ys_lsim, '—-");

90

Chapter 2. Dynamics

[15]:

Dynamics and Control, Release 0.0.1

L p— Euler

Isim -
0.8 1 L

0.6 4 /
0.4 1 /

02 A i

pgq —

00 25 50 75

o0 125 150 175

Manual integration using state space form

200

We can also use our Euler loop to simulate arbitrary systems using the state space representation

:nbsphinx-math:begin{align}
dot{x} &= Ax +Bu\y &= Cx + Du
end{align}"

This is a useful technique when simulating Hybrid systems (where some parts are LTI and some are nonlinear systems).

Luckily the 1t i object we created earlier can be converted to a state space representation.

: Gss = G.to_ss|()

Gss

StateSpaceContinuous (
array ([[-0.2]1),
array ([[1.]11),

array ([[0.2]1),

array ([[0.]11),

dt: None

)

: X = numpy.zeros ((Gss.A.shape[0], 1))

ys_statespace = []
for t in ts:
xdot = Gss.A.dot (x)
y = Gss.C.dot (x) +

+ Gss.B.dot (u(t))
Gss.D.dot (u(t))

x += xdot*dt
ys_statespace.append(y[0,0])

: plt.plot (ts,

plt.plot (ts,

ys)
ys_statespace,

1771)

plt.legend(['Euler

(manual) ',

'Euler

(state space)'])

<matplotlib.legend.Legend at 0x23lea2dfdf0>

2.5. Complex system dynamics

91

[16]:

[17]:

Dynamics and Control, Release 0.0.1

104 —
= Euler (manual) e —
Euler (state space) —
0.8 1 {_ﬂ.-f"
-’_,/
p
06 4 ///
Vi
y,
04 ;f
Iy
02 A ff
ff
f
004 -

00 25 50 75 100 125 150 175 200

Demonstration for higher order functions

As mentioned before, Sympy cannot always be used to obtain inverse Laplace transforms. The scipy.signal func-
tions continue to work for higher order functions, too. Let’s find the step response of the following transfer function:

Gy =

1

s34+2s2 4+ 5+1

Feel free to uncomment and run the block below: I gave up waiting for the inverse to be calculated.

import sympy

s, t = sympy.symbols('s, t')
G2 = 1/(s**3 + 2*s**2 + s + 1)
r = sympy.inverse_laplace_transform(G2/s, s, t)

However, the step response is calculated quickly by the LTI object.

numerator = 1
denominator = [1, 2, 1, 1]
G2 = scipy.signal.lti (numerator, denominator)

: plotstep (G2)

92

Chapter 2. Dynamics

[22]:

[22]:

Dynamics and Control, Release 0.0.1

1l

144

12 4

10 4

05 4

06 4

04

0Z 4

00 4

0.0 25 50 75 100 125 150 175 200

State space for higher order functions

: Gss = G2.to_ss|()

: Gss

StateSpaceContinuous (
array([[-2., -1., -1.]1,
[1., 0., 0.1,

[0., 1., 0.11),
array ([[1.],
[0.1,

[0.11),
array ([[0., 0., 1.11),
array ([[0.]1]1),
dt: None
)

We can use the same code as before. Now, I'm going to store all the states as well. Notice that we have three states for

the third order system.

: X = numpy.zeros ((Gss.A.shape[0], 1))

ys_statespace = []

xs = []

for t in ts:
xdot = Gss.A.dot (x) + Gss.B.dot(u(t))
y = Gss.C.dot (x) + Gss.D.dot(u(t))

x += xdot*dt
ys_statespace.append(y[0, 0])

We need to copy otherwise the x update will overwrite all the values

xs.append (x.copy ())

plt.plot (ts, ys_statespace)

[<matplotlib.lines.Line2D at 0x231leb3bad90>]

2.5. Complex system dynamics

93

[237]:

[23]:

[24]:

[247]:

Dynamics and Control, Release 0.0.1

1l A

14 -

124

104

05 4

0.6

04

0z

00 4

T T T
00 25 50 75 oo 125 150 175 200

plt.plot (ts, numpy.concatenate(xs, axis=1).T)

[<matplotlib.lines.Line2D at 0x231ea3750a0>,
<matplotlib.lines.Line2D at 0x231ea3750d0>,
<matplotlib.lines.Line2D at 0x231ea375460>]

150 1

125 A

100 A

075 H

050 4

025 A

0.00 A

—0.25 A

T T T
00 25 50 75 1o 125 150 Iv5s 200

Systems in series

What if we wanted to see the response of G3(s) = G(s)G2(s)? You may expect that we would be able to find the
product of two transfer functions, but the scipy.signal functions don’t allow this.

G

TransferFunctionContinuous (
array ([0.2]),

array([1. , 0.21),

dt: None

)

94 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

G*G2

TypeError Traceback (most recent call last)

<ipython-input-25-2585f2f9cbhal> in <module> ()
———> 1 G*G2

TypeError: unsupported operand type (s) for *: 'TransferFunctionContinuous'

— '"TransferFunctionContinuous'

Instead, we could use the convolution of the numerators and the denominators. This is equivalent to polynomial multi-

plication. For instance, let’s work out (s + 1)3

numpy .convolve (numpy.convolve ([1, 1], [1, 11), [1,

array ([1, 3, 3, 11)

G.num

array ([0.2])

numerator = numpy.convolve (G.num, G2.num)
numerator

array ([0.2])

denominator = numpy.convolve (G.den, G2.den)
denominator

array([1. , 2.2, 1.4, 1.2, 0.2])

G3 = scipy.signal.lti (numerator, denominator)

: plotstep (G3)

104

05 4

06 4

04

02

00

T
0.0 25 50 75 o0 125 150 175 200

2.5. Complex system dynamics

95

[32]:

[33]:

[34]:

Dynamics and Control, Release 0.0.1

3. Control module

Another option for handling LTI systems is to use the Python Control Systems Libaray. Unfortunately, this is not included
in anaconda, so you will have to install it before use by uncommenting the line below and running it:

#!pip install control

import control

A big benefit of this module is that its transfer function objects support arithmetic operations:

G = control.tf (K, [tau, 11)
G2 = control.tf (1, [1, 2, 1, 11)
G3 = G*G2

: _, vy = control.step_response (G3, ts)

plt.plot (ts, vy)

[<matplotlib.lines.Line2D at 0x231eb5af490>]

104

0.5

06 1

04

0z A

00

00 25 50 75 100 1@5 150 175 200

96

Chapter 2. Dynamics

https://python-control.readthedocs.io/en/latest/

Dynamics and Control, Release 0.0.1

2.5.3 Simplifying block diagrams

These notes detail some techniques for reducing block diagrams graphically. In this notebook, I will solve the problem
using SymPy.

Let’s reduce this big block diagram to one input-output relationship (Example 4 in the notes linked to above):

. Fyis) + Fals) Ci5)
(rol5) : SN (r4(5) -

Gy(5)

Vils)
Hys) 9 1 by

Hyls) -

: import sympy

sympy.init_printing /()

(R, V1, V2, V3, V4, V5, V6, V7, V8, C,
Gl, G2, G3, H1, H2, H3) = sympy.symbols ('R, V1, V2, V3, v4, V5, V6, V7, V8, C,'
'Gl, G2, G3, H1, H2, H3")
unknowns = V1, v2, v3, v4, V5, ve6, V7, V8, C

: eqs = [# Blocks

V2 - G1*V1,
vd - G2*V3,
C = G3*VH,

Ve - H1*V4,
V7 - H2*V4,

V8 - H3*C,
Sums
vl - (R - V6),
V3 - (V2 - V),
V5 - (V4 + V3 - V8),
]
: sol = sympy.solve(eqgs, unknowns)
sol
{C) G1G3R (GQ + 1) Ve R (G2H2 + 1)) GlR(GQHQ + 1)
.(;1(;26%}¥1££34‘(;1(;2f{14—(;2(;3f{2fﬂ3+'(;2£ﬂg%-(;3fﬂ;+*1, ! .(;1(;2f{14—(;2]¥2'+ 1’ 2 .(;1(;2f{14—(;2}{2—F

The solution in the notes is factored:

: sol[C].factor ()

G1G3R (G2 + 1)
(G3H3 +].) (G1G2H1 + GoHy + 1)

2.5. Complex system dynamics 97

http://faculty.mu.edu.sa/public/uploads/1415021770.8406Block_Diagram_Reduction_Rules.pdf

Dynamics and Control, Release 0.0.1

2.5.4 Approximation

There are many cases where we end up with very high order models or models with dead time which we would like to

approximate with lower order models or models without dead time. This notebook illustrates some of the approaches.
[1]: import sympy

sympy.init_printing()

import numpy

import matplotlib.pyplot as plt
smatplotlib inline

[2]: import tbcontrol

[3]: tbcontrol.expectversion('0.1.7")

Taylor approximation

We have encountered Taylor approximants before. They are polynomial approximations and can easily be calculated
using the sympy . series function.

[4]: x = sympy.symbols ('x")

[5]: £ = sympy.sin(x)
Note that Sympy uses the number of terms instead of the order of the polynomial, so this is a second order polynomial
about the point x=2

[6]: f.series(x, 2, 3).removeO()

ol M;Sin(Q)Jr(xQ)cos(Q)JrSin(Q)

Let’s plot a couple of approximations of sin (x):

[7]: def taylor(xlim, ylim):
p = sympy.plot(f, (x, *xlim), show=False)

colors = ['red', 'green', 'magenta', 'brown']
for n, color in enumerate (colors, 1):
approx = f.series(x, 2, n).removeO()

p.extend (sympy.plot (approx, (x, *xlim),
line_color=color, show=False))
p[n].label = f'Order: n-1}"'

p.ylim = ylim
p.xlim = xlim
p.legend = True
p.show ()

[8]: taylor((-10, 10), (-4, 4))

98 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

simx)
Order: &
Order: 1

Order: 2
Order: 3

/N
75 [0

AN
AN

An important characteristic of all polynomial approximations is that the function always grows large “far enough” away
from the origin and therefore cannot model asymptotes very well. Let’s zoom out on that graph a bit:

[9]: taylor((-100, 100), (-1000, 1000))

= 1000 - _
— X}
750 - = QOrder: 0
= QOrder: 1
500 —— QOrder: 2
150 — (Order: 3
T 1 T ; =
100 -75 -50 i 25 50 75 100
04 X
00
T50 4
1000 -

Padé approximation

Padé approximation is an extension of the concept of Taylor approximation with rational functions rather than polynomials.
The basic premise is that the approximation is made by matching derivatives at a particular point. Padé approximants are
often associated with dead time approximation, but can be used for arbitrary transfer functions as well.

One of the big benefits of Padé approximants is that rational functions can become constant for large magnitudes of z.

We will approximate a Laplace dead time

[10]: s = sympy.symbols('s")

[11]: G = sympy.exp(—2*s)

2.5. Complex system dynamics 99

[117]:

[12]:

[13]:

[147]:

Dynamics and Control, Release 0.0.1

6—28

by a 1/1 Padé approximation. This means first order above the line and first order below. In order to force uniqueness of
the solution, we force the constant term in the denominator to be unity.

import tbcontrol.symbolic

sO =0

G_pade = tbcontrol.symbolic.pade(G, s, 1, 1, sO0)

G_pade
1-s
s+1

Compare this with a taylor approximation with same number of coefficients (matching the same number of derivatives)

G_taylor = G.series(s,

G_taylor
25% — 2541

s0, 3).removeO ()

So how much do the approximations resemble the original function?

First, let’s check just the real part

: plotrange = (s,
def plot_approx (G,

=2,

B))
G_pade, G_taylor):

p = sympy.plot (G, plotrange, show=False)
sympy.plot (G_pade, plotrange, show=False, line_color='red')

pade_approx

taylor_approx

= sympy.plot (G_taylor,

p.extend (pade_approx)
p.extend(taylor_approx)

pll].label
pl2].label

p.ylim = (-1,

p.legend =
p.show ()

plot_approx (G, G_pade,

'Pade’

'Taylor'

3)

True

G_taylor)

i
— exp(-2¥s)
—— Pade
— Taylor

==]

plotrange, show=False, line_color='green')

100

Chapter 2.

Dynamics

Dynamics and Control, Release 0.0.1

Note the singularity in the Padé approximation, as well as the fact that the Taylor polynomial has an unbounded error to
the right, while the Padé approximation is better behaved.

Now, let’s see what this looks like for the whole complex plane
[17]: try:
import mpmath

except ImportError:
from sympy import mpmath

[18]: def cplot (G):
f = sympy.lambdify (s, G, ['mpmath', 'numpy'])
mpmath.cplot (£, [-2, 2], [-2, 2], points=10000)

The original function
[19]: cplot (G)
20
15
1a
5

o0

Imi{z)

—0.5 1

=1.0

-1.5 4

Re(z)

Pade approximation
[20]: cplot (G_pade)
20
15
10
5

o0

Imifz)

Re(z)

2.5. Complex system dynamics 101

Dynamics and Control, Release 0.0.1

Taylor approximation
[21]: cplot (G_taylor)
20
15
10
5

00

Imi{z}

-0.5

—2.0 7 T
-2 -1 o 1 2

Re(z)

The Pade approximation is much better in the region around 0.

Further exploration

Padé approximations with order O below the line are effectively Taylor polynomials
[22]: tbcontrol.symbolic.pade(G, s, 1, 0, 0)
[221: 1—=2s

This form is often used the other way around to approximate lags with dead time

[23]: tbcontrol.symbolic.pade (G, s, 0, 1, 0)

[237]: 1
2s+1

[24]: def approx_comparison(G, M, N):
P = tbcontrol.symbolic.pade (G, s, M, N, 0)
T = sympy.series (G, s, 0, N+M+1l).removeO ()
plot_approx (G, P, T)

[25]: from ipywidgets import interact

[26]: deadtime = sympy.exp(-2*s)
high_order = 1/(s + 1)**10

[27]: plotrange=(s, -5, 5)
[28]: interact (approx_comparison, G=[deadtime, high_order], N=(0, 3), M=(1, 3))

interactive (children= (Dropdown (description='G', options=(exp(-2*s), (s + 1)**(-10)),
—value=exp(-2*s)), IntSlid..

102 Chapter 2. Dynamics

[33]:

Dynamics and Control, Release 0.0.1

<function __main__ .approx_comparison (G, M, N)>

Approximations based on response matching

The approximations we discussed above are based on matching the values in the Laplace domain. However, we often
want to find an approximation which has the property of matching the time domain responses.

A common-sense rule is that larger time constants are more important to retain than smaller ones. My personal rule is
that any time constant which is less than 10 times smaller than the next largest one can usualy be ignored, in other words,
for our purposes

1 1
(10s +1)(s+1) ~ 10s+1

Note 1 It is conventional to arrange the terms in descending orders of time constants.

Note 2 This is a rule of thumb and should not be applied during intermediate calculations. You should always be aware
of the point where you are applying approximation and make a note that you have done this.

In this section I'll be using the Python Control Systems Library. It doesn’t support dead time in its transfer function object,
but I'll fake it in the responses by shifting them with a certain dead time. We assume version 0.8.0.

: import control

control.__ version

'0.8.2"

I like defining s like this to make formulae easier to type later on. Note that this overwrites our earlier symbolic s, so
after this definition we can no longer use s in sympy.

s = control.tf([1, 0], 1)

We'll be plotting lots of step responses for delayed transfer functions. This function will “fake” this by calculating the
undelayed response and plotting it shifted up by the delay.

: def plotstep (G, D=0, T=None) :

t, vy = control.step_response (G, T=T)
new_t = numpy.concatenate([[0], t + D])
new_y = numpy.concatenate([[0], v])
plt.plot (new_t, new_y)

Gl = 1/((s + 1)*(10*s + 1))
G2 = 1/((10*s + 1))

: plotstep(Gl)

plotstep (G2)

2.5. Complex system dynamics 103

https://python-control.readthedocs.io/en/latest/

Dynamics and Control, Release 0.0.1

104

05 4

06 4

04+

02 A

0.0 4

0 10 20 30 40 50 G0 70

First order systems in series often have step responses which resemble those of lower order systems with increasing dead
time:

[35]: ts = numpy.linspace (0, 20)
G =1/(s + 1)
for i in range(10):
G *= 1/(s + 1)
plotstep (G, T=ts)

104

0.5 4

06 4

04+

02 A

0.0 4

T T T
00 25 50 75 100 125 150 175 200

If we use the 0, 1 Padé approximation of dead time:

~ 1+ 06s

[36]: plotstep (G, T=ts)
plotstep(1/(s + 1), D=10, T=ts)

104 Chapter 2. Dynamics

[37]:

Dynamics and Control, Release 0.0.1

104

0.5 4

06 4

04+

02 A

0.0 4 -
0 5 10 15 20 25 30

We see that we get the same kind of behaviour but the dynamics start too fast and end too slow.

We can “eyeball” a lower-order response which matches the last 10th order response pretty well. Play with these sliders
and see how easy it is to match the lines together.

def approx(tau, D):
plotstep (G, T=numpy.linspace (0, 30))
plotstep(1/ (tau*s + 1), D=D, T=numpy.linspace(0, 30 - D))
plt.show ()

: interact (approx, tau=(1., 10.), D=(1., 10.))

interactive (children=(FloatSlider (value=5.5, description='tau', max=10.0, min=1.0),.
—~FloatSlider (value=5.5, des..

]: <function __main__.approx(tau, D)>

Skogestad’s “Half Rule”

Skogestad’s “half rule” is specifically designed to approximate complicated transfer functions as first order plus dead time
(FOPDT) or second order plus dead time (SOPDT) models:

K —0s K —0s
€ SOPDT: €

FOPDT:
Ts+1 (18 +1)(m2s+ 1)

The method does not work for systems with complex roots or unstable systems.
The function tbcontrol.numeric.skogestad_half implements this method.
For instance, let’s take the transfer function from Example 5.4:

K(—0.1s+1)

Gls) = (55 + 1)(3s +1)(0.5s + 1)

The gains are always matched, so we can safely use K = 1

: K =1

2.5. Complex system dynamics 105

[44]:

Dynamics and Control, Release 0.0.1

: G = K*(-0.1*s + 1)/ ((5*s + 1)*(3*s + 1)*(0.5*s + 1))

: from tbcontrol.numeric import skogestad_half

: 81, [Tt] = skogestad_half([-0.1], [5, 3, 0.5], delay=0, order=1)

Gapproxl = K/ (t*s + 1)

: 082, [Tl, T2] = skogestad_half([-0.1], [5, 3, 0.5], delay=0, order=2)

Gapprox2 = K/ ((tl*s + 1)*(t2*s + 1))

Let’s see what our final approximations look like:

plotstep (G)
plotstep (Gapproxl, D=61)
plotstep (Gapprox2, D=62)
plt.legend ([
'Original function',
'"FOPDT',
'SOPDT'])

: <matplotlib.legend.Legend at 0x1228c6dd8>

10 A
08 1
0.5 1
04 1
0.2 1 = Original function
FOPDT
0.0 - — SOPDT
T T T T T
0 10 20 30 40
Not bad!

2.6 Multivariable system representations

2.6.1 Transfer function matrices

Let’s say we have two inputs and two outputs. We can write the linearised effect as follows:

y1 = Guiur + Grouz (2.21)
y2 = Garug + Gagus (2.22)
Which is equivalent to a matrix expression
y = Gu
106 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

with

Y1 G
- G =
y [yz} [Gm

I find it useful to picture the input going into the top of the matrix and the output coming out of the side

Representing matrices in SymPy

: import sympy

sympy.init_printing/()

s = sympy.Symbol ('s")

1 Gll = (s + 1)/ (s + 2)

Gl12 = 1/(2*s + 1)
G21 = 1/(3*s + 1)
G22 = 1/(4*s + 1)

rowl = [Gl1l, G12]

row2 [G21, G22]

list_of_lists = [rowl,
row?2]

: G = sympy.Matrix(list_of_lists)

: G[0, 0]

s+ 1
s+ 2

sympy.simplify (G.inv ())

[6s3+17s%+115+2 125343152 4+155+2
653 +7s2—-35—1 653i75273571
85542252 41354+2 245 4+505°43552+10s+1
653+7s2—-35—1 653+7s2—-35—1
G + G
[2(s+1) 2
2 2541
°3 v
L 3s+1 4s5+1

Representing matrices using the control library

: import control

control.tf ([0, 11, [1, 21)

s+ 2

2.6. Multivariable system representations

107

Dynamics and Control, Release 0.0.1

: s = control.tf([1, O], 1)

: G =1/(s + 1)

: numll = [1, 2]
numl2 = [2]
num2l = [3]
num22 = [4]
rowl = [numll, numl2]
row2 = [num21, num22]
numerator = [rowl,
row2]
denominator = [[[1, 11, [2, 111,
(03, 11, (4, 1111
Gmatrix = control.tf (numerator,
denominator)
: Gmatrix

2.6.2 Conversion to state space

—| ®»

5+2 2
s+1 2s+1
S Bf]

3s+1 4s+1

See the state space notebook for more information about conversion between state space and transfer function form. The
examples in that notebook are for SISO transfer functions.

There are no tools in scipy.signal to deal with mutlivariable transfer functions. However, the control library can do
the conversion from a transfer function matrix to a state space form if you have the “slycot <>__ library installed.

You can try to install slycot using this command:

: control.ss (Gmatrix)

: #!conda install -c conda-forge control slycot

—1.33 —1.11-10716 —1.67 10716 —0.333 1 —1.11-10716
—3.33-10716 —0.75 —0.125 6.94 -10°17 | 0 1
1.11-10716 1 10716 —3.41 10716 | 0 0
1 0 1.31 -10716 —9.52 10717 | 0 0
1 1 0.25 0.333 1 0
1 1 1 0 0

What are the true values of those small (10~16) values?

108

Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

2.6.3 State space representation

The “standard” or most commonly used state space representation is

= Ax + Bu
y=Cz+ Du

Take note that Seborg uses a slightly different version:

= Ax+ Bu+ Ed

y=Cx

(2.23)
(2.24)

(2.25)
(2.26)

This second version can not represent pure gain systems as it effectively assumes D = 0. It is also possible to stack « and
d from the bottom form into one input vector, so the £ matrix really doesn’t add much. As you may infer, I prefer the

top version and it is also the version used by most libraries.

: import numpy

import numpy.linalg

Converting between state space and transfer function forms

There is good support in various libraries for converting systems with numeric coefficients between transfer function and

state space representation.

Scipy.signal

The scipy.signal library handles conversion between transfer function coefficients and state space matrices easily.

Note that scipi.signal only handles SISO transfer functions.

: import scipy.signal
: G = scipy.signal.lti(1, [1, 11)

: G

]: TransferFunctionContinuous (

array ([1.]),
array([1., 1.1),
dt: None

)

This object allows us to access the numerator and denominator

: G.num, G.den

(array ([1.]), array([l., 1.1))

To convert to state space, we can use the .to_ss () method

2.6. Multivariable system representations

109

Dynamics and Control, Release 0.0.1

Gss = G.to_ss()

Gss.A, Gss.B, Gss.C, Gss.D

(array ([[-1.11), array([[1.1]), array([[1.]]), array([[0.]]))

We can build another object using the state space matrices instead of the Laplace form

G2ss = scipy.signal.lti(Gss.A, Gss.B, Gss.C, Gss.D)
G2ss

StateSpaceContinuous (
array ([[-1.]11]),
array ([[1.11),

array ([[1.]11),
array ([[0.11),
dt: None

)

We can convert to transfer function form using . to_t £ () (there is a small warning about bad coefficients, but the answer
is reliable).

G2 = G2ss.to_tf()

C:\Users\Admin\anaconda3\lib\site-packages\scipy\signal\filter_design.py:1630:._
—BadCoefficients: Badly conditioned filter coefficients (numerator): the results may.
—be meaningless

warnings.warn ("Badly conditioned filter coefficients (numerator): the "

We can now access the numerator and denominator again:

G2.num, G2.den

(array ([1.]), array([1l., 1.]))

Instead of building objects we can also use the functions in scipy.signal.lti_conversion:

scipy.signal.lti_conversion.tf2ss (1, [1, 1])

(array ([[-1.11), array([[1.1]), array([[1.]]), array([[0.]]))

scipy.signal.lti_conversion.ss2tf (-1, 1, 1, 0)

(array ([[0., 1.]1), array([1l., 1.]))

Control library

The control library (at least from version 0.8.0) does a good job with these conversions as well.

import control

Gtf = control.tf([1], [1, 11)
Gtf

s+1

110 Chapter 2. Dynamics

[17]:

[18]:

Dynamics and Control, Release 0.0.1

In the control library we convert the system using ss (short for state space) to get a State Space representation:

: Gss = control.ss (Gtf)

Gss

: Gss.A

I+ array ([[-1.]])

Symbolic conversion
It is easy to convert state space models to transfer functions since the Laplace transform is a linear operator:
#=Ar+Bu . sX(s)=AX(s)+BU(s) X(s)=(sI - A BU(s)

y=Crx+Du . Y(s)=CX(s)+DU(s) Y(s)=(C(sI—A)'B+D)U(s)

G(s)

This conversion is handled for symbolic matrices by tbcontrol.symbolic.ss2tf

import sympy

import tbcontrol
tbcontrol.expectversion('0.1.8")
import tbcontrol.symbolic

: s = sympy.symbols('s")

: A, B, C, D= [sympy.Matrix(m) for m in [G2ss.A, G2ss.B, G2ss.C, G2ss.D]]

: A, B, C, D

(Matrix ([[-1.01]1), Matrix([[1.0]]1), Matrix([[1.0]]), Matrix([[0.0]11))
G = tbcontrol.symbolic.ss2tf (A, B, C, D, s)
G
1.0
[s+1.0}

Note that ss2t f returns a sympy Matrix. To get the SISO result, we need to index into the matrix:

: G[0, 0]

1.0
s+1.0

2.6. Multivariable system representations 111

[24]:

[24]:

[25]:

[25]:

Dynamics and Control, Release 0.0.1

Analysis

Notice that the roots of the characteristic function correspond with the eigenvalues of the A matrix. The numerator and
denominator of control transfer functions are stored as lists of lists to accomodate MIMO systems.

Gtf.pole()

array([-1.])

numpy .roots (Gtf.den[0] [0])

array ([-1.])

: numpy.linalg.eig(Gss.A)

(array ([-1.1), array([[1.]11))

2.7 System identification

: import numpy

from matplotlib import pyplot as plt
smatplotlib inline

2.7.1 Linear regression

Data from Example 6.1 of Seborg, Edgar, Melichamp and Doyle (3rd edition)

: import pandas

: df = pandas.read_excel('../../assets/example_6_1.xlsx")

: x = df['Fuel Flow Rate']

y = df['Power Generated']

: plt.scatter(x, y)

: <matplotlib.collections.PathCollection at 0x11b005588>

112

Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

16 1 e

12 - .

10 1

That resembles a straight line! Let’s say the line is described by
y=axr—+b

In regression, we are trying to find a and b given lots of values for y and x, so we have something like

Yo = axp + b (227)
y1=ax;+0b (2.28)
Y2 =axa +b (2.29)
f= (2.30)
(2.31)
‘Which we factor as
Yo xg 1

yl — X1 1 a

. R

~—~— ~—— B

Y X

In this case, when there are many points, X is taller than it is wide and as such we know that there is no solution to the
exact equations. Instead, we may try to get “close” to the solution. We can write the residuals as

e=Y —Xp

Here, € is a vector of errors, one for each data point. The (euclidian) length of this vector is given by

||e|\/§

It is common to focus on minimising the part without the square root to make calculations simpler. This leads to the
popular way of determining the error of a fit called the “sum of square errors”, sometimes expressed as ||€||?.

This minimisation is written in mathematical notation as
min E €
5

which is read in words as as “minimise (with respect to or by changing 3) the sum of the square error”.

2.7. System identification 113

[117]:

Dynamics and Control, Release 0.0.1

2.7.2 Create the design matrices

The matrices Y and X are sometimes called the design matrices. We can build them using basic numpy functions as
follows:

: Y = numpy.asmatrix(y).T

X

numpy .bmat ([numpy.c_[x], numpy.ones_like(Y)])

Note numpy . c_ produces a two dimensional array from a one dimensional one in a column.

In the case of polynomials, X is a special matrix called a Vandermonde matrix, and numpy has a function which generates
them more easily.

: X = numpy.asmatrix (numpy.vander (x, 2))

There is also a library called patsy which supplies a simplified syntax to construct these matrices:

: import patsy

39
=
Il

patsy.dmatrices ("Q('Power Generated') ~ Q('Fuel Flow Rate')", df)

: Y, X = map (numpy.asmatrix, (Y, X))

Pseudoinverse solution
First, let’s apply the pseudoinverse method directly (note you should never do this for production code, as calculating
inverses is computationally expensive)

The solution minimising the sum of the squares of the residual ||¢||? can be shown to be

f=xXTX)"'xTy

#Excel: =MMULT ((MINVERSE (MMULT (TRANSPOSE (_X); _X))); MMULT (TRANSPOSE (_X); _Y))
betahat = (X.T * X).I * X.T * Y
betahat

]: matrix ([[0.07854918]

[1.8593239711)
Note: The code above is as close as possible to the equation above, as I have made X and Y matrices. The numpy
developers advise against using the ““numpy.matrix™" class.
Matrix properties: * . T: Transpose * . I: Inverse * . A: Array form of matrix

Normal numpy . arrays don’t have an . I property and don’t multiply matrix-fasion but rather element-wise. Here is
how we would have to write the code if we used arrays:

Y = Y.A

X = X.A

: numpy.linalg.inv(X.T @ X) @ X.T @ Y

array ([[0.07854918],
[1.85932397]11)

The @ operator always does matrix multiplication and expects two-dimensional arrays on both sides.

114 Chapter 2. Dynamics

https://en.wikipedia.org/wiki/Vandermonde_matrix
https://patsy.readthedocs.io

[14]:

[15]:

[15]:

[19]:

Dynamics and Control, Release 0.0.1

Dedicated solvers

Calculating the inverse is not a numerically well behaved operation, so you should rather use a dedicated routine if you
are solving this kind of problem:

beta, residuals, rank, s = numpy.linalg.lstsqg(X, Y, rcond=None)
beta

array ([[0.07854918],
[1.8593239711)

However, polynomial fits are such a common operation that there are nicer routines to do this fit. There are a whole range
of functions in numpy which start with poly. Press tab to see them.

numpy .poly

<function numpy.poly (seq_of_zeros)>

: poly = numpy.polyfit(x, vy, 1)

poly
array ([1.85932397, 0.07854918])

Notice that we could just pass the data directly, and the routine handled building the various matrices and the fitting itself.

It is useful to plot the regression with the data points, but we should sample on a finer grid.

smoothx = numpy.linspace (min(x), max(x), 1000)

: def regplot (poly) :

smoothy = numpy.polyval (poly, smoothx)
plt.scatter(x, y, label='data')
plt.plot (smoothx, smoothy, label='linear regression')
plt.plot (x, numpy.polyval (poly, x), label='linear regression, less points"')
plt.legend(loc='best")
regplot (poly)

—— linear regression A2
16 1 . .) &
linear regression, less points
141 ® data o
12 - &
-
10
]
g &
B P,
4] o
2{ &
1 2 3 4 5 B 7 B 9

There’s obviously no difference between the two for a linear fit, but what about higher orders?

poly9 = numpy.polyfit (x, y, 8)
regplot (poly9)

2.7. System identification 115

[22]:

[22]:

[25]:

Dynamics and Control, Release 0.0.1

1 —— |inear regression
linear regression, less points
14 - e data

12 - /

™
10 - e
s
B 1 #ﬂ
-

3 o

4

2 -

1 2 3 4 5 3 7 8 9

If we had just plotted the connecting lines, we would have missed the bit sticking up on the left!

2.7.3 Nonlinear regression

We can apply the same principles to fit nonlinear functions as well. The scipy.optimize.curve_£fit function

can be used to fit an aribitrary function to data

import scipy.optimize

Let’s start by reproducing the results from the linear fit

: def f£(x, a, b):

"""fitting function linear in coefficient"""
return a*x + b

beta, _ = scipy.optimize.curve_fit(f, x, vy, [1,
beta

array ([1.85932396, 0.07854919])

Now let’s build some data which is obviously nonlinear

X = numpy.arange (1, 10)
y = 2*numpy.sin(3*x) + x + 1

: def f2(x, a, b, c, d):

""" A nonlinear fitting function"""
return a*numpy.sin(b*x)+ c*x + d

def

fit_and_plot (betal) :

beta,

= scipy.optimize.curve_fit (£2,

plt.scatter (x,

y)

plt.plot (smoothx,

return beta

f2 (smoothxk,

*beta))

Xy

Yr

01)

betal)

116

Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

[26]: fit_and_plot([1, 1, 1, 11)

[26]: array([0.32658273, 1.45786791, 1.0854963 , 0.6763682])

12 1]

10 1

What went wrong?

The initial values we chose were not sufficiently close to the “correct” values. This shows the first main problem with
nonlinear regression: there may be multiple solutions which are returned based on the initial guess.

Linear regression Nonlinear regression

single correct solution multiple solutions possible depending on initial guess
requires no initial guess requires initial guess

Never returns the “wrong” local minimum solution ~ Sometimes claims success with “wrong” answer

less flexible in functional form more flexible functional form

Let’s try a different starting point. Remember the initial data were generated with 5 = [2,3, 1, 1]

[27]: beta2 = fit_and_plot([2, 2.8, 1, 11)
beta2

[27]: array([2., 3., 1., 1.1)

12

10 1

2.7. System identification 117

[28]:

[31]:

[31]:

[29]:

[30]:

Dynamics and Control, Release 0.0.1

OK, now we know we’re right, right? The error of this fit is essentially zero.

def fiterror (beta):
return sum((y - f2(x, *beta))**2)

fiterror (beta?2)

1.8617117363215879%e-28

But wait, what about this:

: beta3 = fit_and_plot([2, 9.2, 1, 11)

beta3

array ([2. , 9.28318531, 1. , 1. 1)

12

10 1

fiterror (beta3l)

2.6505726415425997e-28

It is clear that there are multiple solutions to this problem which are equally good! This is a property of nonlinear
regression. It is often impossible to recover the “right” values of the parameters. You should therefore be careful of
interpreting a good fit as evidence of correctness of your model.

2.7.4 Fitting step responses

It is often prohibitively expensive to develop first principle models of processes and therefore it is very common to estimate
low order transfer functions directly from plant data. This is simple to do if we have access to step test results.

import control

import numpy

import matplotlib.pyplot as plt
import tbcontrol
tbcontrol.expectversion("0.1.10")
smatplotlib inline

Let’s start with a higher order process to generate our “real data”

Greal = control.tf([1, 2], [2, 3, 4, 1])

118 Chapter 2. Dynamics

[32]:

[36]:

Dynamics and Control, Release 0.0.1

ts, ys = control.step_response (Greal)

Remember that the real data will not necessarily start at zero, so we’ll add in some value for the initial output. We will

also add some normally distributed noise to represent measurement error.

yinitial = 10
measurement_noise = numpy.random.randn (len(ys))*0.05

ym = ys + yinitial + measurement_noise

: plt.scatter(ts, ym)

plt.plot(ts, ys + yinitial, color='red'")

[<matplotlib.lines.Line2D at Ox1clf8f10b8>]

12.0 A

10.5 A

10.0 1

import scipy.optimize

We'll fit a first order plus dead time and second order plus dead time model. The tbcontrol.responses library

contains the analytic formulae for these step responses.

from tbcontrol.responses import fopdt, sopdt

It is very important to have a good idea of the initial parameter values. Interaction makes it easy to figure out.

from ipywidgets import interact

: def resultplot (K, tau, theta, yO0):

plt.scatter(ts, ym)
plt.plot (ts, fopdt(ts, K, tau, theta, y0), color='red'")
plt.show ()

interact (resultplot,
K=(1., 10.),
tau=(0., 10.),
theta=(0., 10.),
y0=(0., 20.));

interactive (children=(FloatSlider (value=5.5, description='K',
—FloatSlider (value=5.0, descr..

max=10.0, min=1.0), .

2.7. System identification

119

[27]:

[28]:

Dynamics and Control, Release 0.0.1

We can use the scipy.optimize.curve_£fit tool to do this fit just like when we did regression without time.

[K, tau, theta, yO0], = scipy.optimize.curve_fit (fopdt, ts, ym, [2, 4, 1, 10])

[K, tau, theta, yO0]

[1.954094509563327, 2.8181973943514884, 0.6113717655974688, 10.031145239708668]

The parameters for the second order model should be similar, with a smaller time constant and overdamped nature.

[K_2, tau_2, zeta_2, theta_2, y0_2], _ = scipy.optimize.curve_£fit (sopdt, ts, ym, [2,_
-2, 1.5, 1, 10])
[K_2, tau_2, zeta_2, theta_2, y0_2]

[1.979805640172486¢6,
0.8305183954384022,
1.8452576915795178,
0.3199080792764559,
10.005597510469169]

plt.figure(figsize=(10, 5))

plt.scatter(ts, ym, label='Data')

plt.plot (ts, fopdt(ts, K, tau, theta, y0), color='red', label='FOPDT fit')

plt.plot (ts, sopdt(ts, K_2, tau_2, zeta_2, theta_2, y0_2), color='red', label='SOPDT_
—fit'")

plt.plot(ts, ys + 10, color='blue', label='Original')

plt.legend(loc="best"')

<matplotlib.legend.Legend at 0x1lclfdlc710>

—— FOPDT fit .
L X []

12.0 1 — sOPOT fit %o

— Original

& Data

15 -
1.0 -
105 -
10.0

120 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

2.7.5 Neural network regression

Neural networks have become very popular recently due to the advent of high performance GPU algorithms for their
application. Modern applications of neural networks often use very large networks, but in this sample we will demonstrate
the possibilities using a network with a single hidden layer.

The general idea of a neural network is shown in the picture below:

uy

uy Y1
Inputs Y2 Outputs
“3 Y3
Output layer
ug

Input layer

Each circle represents a neuron, and the output of the neuron is calculated as shown below. In simple terms, the output
of a neuron is the weighted average of its inputs, passed through what is known as an activation function. The function
shown in the picture is known as a logistic or sigmoid function.

s |

u; = Input signals
Wg = Weights
yj = Output signal

: import numpy

import matplotlib.pyplot as plt
$matplotlib inline

We will build our own network in this example to regress a one dimensional function. This means we will only have one
input (u), and one output (y), but we can choose the number of hidden neurons. The more hidden neurons we have, the
more curves we can handle in the fit function. 3 appears to be enough to do the general fits we do here without the training
taking very long. There is no general rule for choosing the number of hidden neurons - use as few as possible to capture
your behaviour as each new hidden neuron adds lots of weights which all have to be found.

: Nhidden = 3

We need to create weights between each input neuron and each hidden neuron as well as each hidden neuron and each
output neuron.

: w_in_hidden = numpy.random.rand (Nhidden)

w_hidden_out = numpy.random.rand (Nhidden)

2.7. System identification 121

Dynamics and Control, Release 0.0.1

We also need a bias for the hidden layer and the output layer

[57]: bias_hidden = numpy.random.rand ()
bias_output = numpy.random.rand ()

We will use a sigmoidal activation function:

[58]: def sigmoid (i) :
expi = numpy.exp (—-1)
return ((1 - expi)/ (1l + expi))

[59]: x = numpy.linspace (-5, 5)
plt.plot (x, sigmoid(x))

[59]: [<matplotlib.lines.Line2D at 0Oxlalca307b8>]

100

075

050 4

025

0.00

—0.25 A

—0.50 1

—0.75 A

=1.00 1

To calculate the output of a neuron, we take the weighted sum of its inputs and apply the activation function. We can do
this all simulateously with numpy arrays:

[60] : def network_output (u, w_in_hidden, w_hidden_out, bias_hidden, bias_output) :
h = sigmoid(w_in_hidden*u + bias_hidden)

y = sigmoid((w_hidden_out*h + bias_output) .sum())

return y

[61]: network_output (0.1, w_in_hidden, w_hidden_out, bias_hidden, bias_output)

[61]: 0.4723938343512528
Let’s find the weights and bias to regress a function. Due to later decisions about the final activation function which is
limited to be between -1 and 1, we will limit our function to be in that range.

[62]: known_u = numpy.linspace (-1, 1)
known_y = numpy.sin (known_u*numpy.pi)*0.8 + numpy.random.randn (len (known_u))*0.05

[63]: plt.scatter (known_u, known_y)

[63]: <matplotlib.collections.PathCollection at Oxlalcb4c898>

122 Chapter 2. Dynamics

[68]:

Dynamics and Control, Release 0.0.1

: def pack(w_in_hidden,

: p0 =

: def predict (parameters,

: plotfit (predict (p0,

0.75 1 o
0.50 -
0.25 . *
0.00 - .

-025{ @ ™

—0.50 -

L o
.0 .'n

—0.75 A

=1.00 4

~100 -075 —050 —025 000 025 050 075 100

import scipy.optimize

Since we're going to use optimisation functions which take an array, we need to be able to our parameters into a single

array and unpack them again.

w_hidden_out, bias_hidden,
return numpy.concatenate ([w_in_hidden,
w_hidden_out,
numpy.array ([bias_hidden]),
numpy .array ([bias_output])])

bias_output) :

def unpack (parameters) :
parts = numpy.split (parameters,
return parts

[Nhidden, 2*Nhidden, 2*Nhidden + 1])

pack (w_in_hidden, w_hidden_out, bias_hidden, bias_output)

us) :
w_in_hidden, w_hidden_out,
return numpy.array ([network_output (u,

—bias_output) for u in us])

bias_hidden, bias_output = unpack (parameters)
w_in_hidden, w_hidden_out, bias_hidden, ..

def plotfit (predictions):
plt.scatter (known_u, known_y,
plt.plot (known_u, predictions)

alpha=0.4)

known_u))

2.7. System identification

123

[70] :

[71]:

[72]:

[44]:

Dynamics and Control, Release 0.0.1

075 1

050 1

025

0.00 4

—0.25 A

—0.50 4

—0.75 A

=1.00 4

~100 -075 —050 —025 000 025 050 075 100

def errorfunction (parameters) :
return known_y - predict (parameters, known_u)

result = scipy.optimize.least_squares (errorfunction, p0)

plotfit (predict (result.x, known_u))

0.75 1

050 1

025 A

0.00 4

—0.25 A

—0.50 4

—0.75 1

=1.00 4

-100 -075 -050 —025 000 025 050 075 100

Scikit-learn

As I've mentioned before, you’re probably better off using a library for things like this. The Scikit-Learn library has neural
network regression built in. It is part of the standard Anaconda install.

import sklearn
import sklearn.neural_network

: net = sklearn.neural_ network.MLPRegressor (hidden_layer_sizes=Nhidden,

activation='tanh',
solver="'1lbfgs', max_iter=1000, learning_
—~rate_init=0.001)

124 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

[46]: observations = numpy.atleast_2d(known_u) .T

[47]: net.fit (observations, known_y)

[47]: MLPRegressor (activation='tanh', alpha=0.0001, batch_size='auto', beta_1=0.9,
beta_2=0.999, early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=4, learning_rate='constant',
learning_rate_init=0.001, max_iter=1000, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=None,
shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1,
verbose=False, warm_start=False)

[48]: plotfit (net.predict (observations))

075

050

025 1

0.00

—0.25

—0.50 4

=075

~100 -075 —050 —025 000 025 050 075 100

Keras

The Keras library offers additinal flexibility, but is not installed by default in Anaconda.

[49] : import keras

/Users/alchemyst/anaconda3/lib/python3.6/site-packages/h5py/__init_ .py:36:.
—FutureWarning: Conversion of the second argument of issubdtype from "float® to "np.

—floating® 1s deprecated. In future, it will be treated as "np.float64 == np.
—dtype (float) .type .
from ._conv import register_converters as _register_converters

Using TensorFlow backend.

[50]: model = keras.models.Sequential ()

[51]: model.add(keras.layers.Dense (Nhidden, input_shape=(1,), activation='tanh'))
model.add (keras.layers.Dense (1, activation='tanh'))

[52]: model.compile (optimizer="'rmsprop', loss='mse')

[53]: model.fit (known_u, known_y, epochs=10000, verbose=False)

2.7. System identification 125

Dynamics and Control, Release 0.0.1

[53]: <keras.callbacks.History at 0xlalc6d5048>

[54]: plotfit (model.predict (known_u))

075 1

050

025 1

0.00

—0.25 A

—0.50 4

—0.75 A

~1.00 -0.75 —0.50 —025 000 025 050 075 100

[28]: import pandas
import numpy
import matplotlib.pyplot as plt
smatplotlib inline

We will fit an ARX model of this form to a step response.

y(k) = a1y(k — 1) + agy(k — 2) + byu(k — 1) + bou(k — 2)

[29]: data = pandas.read_csv('../../assets/data.csv', index_col='k")
data['uk'] = 1
data.loc[0] = [0, 1] # input changes at t=0
data.loc[-1] = [0, 0] # everything was steady at t < 0
data = data.sort_index ()
data
[29]: vk uk
k
-1 0.000 0
0 0.000 1
1 0.058 1
2 0.217 1
3 0.360 1
4 0.488 1
5 0.600 1
6 0.692 1
7 0.772 1
8 0.833 1
9 0.888 1
10 0.925 1

[30]: y = data.yk
data.uk

c
Il

126 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

[31]: data.plot ()

[31]: <matplotlib.axes._subplots.AxesSubplot at 0x6215bf828>

104

05 4

06 4

04

02 A

We effectively have the following equations (I repeat the equation here for convenience):

y(k) = a1y(k — 1) + agy(k — 2) + byu(k — 1) + bou(k — 2)

[32]: for k in range (1, 11):

print (£'{yl[k]:.2} = alx{y[k - 1]1:.2} + a2x{yl[k - 2]:.2} + blx{ulk - 1] + b2x{ulk.

= 21}")

0.058 = alx0.0 + a2x0.0 + bix1l + b2x0
0.22 = alx0.058 + a2x0.0 + bix1l + b2x1
0.36 = alx0.22 + a2x0.058 + bix1l + b2x1
0.49 = alx0.36 + a2x0.22 + blx1l + b2x1
0.6 = alx0.49 + a2x0.36 + blx1l + b2xl1l
0.69 = alx0.6 + a2x0.49 + blx1l + b2xl
0.77 = alx0.69 + a2x0.6 + blx1l + b2x1l
0.83 = alx0.77 + a2x0.69 + bix1l + b2x1l
0.89 = alx0.83 + a2x0.77 + bilx1l + b2x1
0.93 = al1x0.89 + a2x0.83 + blx1l + b2x1l

[33]: pandas.DataFrame ([(k,
yk],
ylk-11,
ylk-21,
ulk-1],
ulk-2]) for k in range(l, 11)], columns=['k', 'y[k]', 'y[k-11"',
—'y[k=-2]", 'ulk-1]', 'ul[k-2]1"'1])

[33]: k ylkl ylk-11 ylk-2] ulk-1] ul[k-2]
0 1 0.058 0.000 0.000 1 0
1 2 0.217 0.058 0.000 1 1
2 3 0.360 0.217 0.058 1 1
3 4 0.488 0.360 0.217 1 1
4 5 0.600 0.488 0.360 1 1
5 6 0.692 0.600 0.488 1 1

(continues on next page)

2.7. System identification 127

Dynamics and Control, Release 0.0.1

O 00 J o
O W 0 J
o O O O

We notice that these equations are linear in the coefficients. We can define 5 = [a1, az, b1, bo
equations in matrix form $Y = X :nbsphinx-math: beta *$, we define

[34]: Y = numpy.atleast_2d(y.loc[1l:]).
Y

[34]: array ([[O0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.

L772
.833
.888
.925

o O O o

.692
L7772
.833
.888

o O O O

.600
.692
L7772
.833

e

= e e

]T

(continued from previous page)

. Now, to write the above

To build the coefficient matrix we observe that there are two blocks of constant diagonals (the part with the ys and the
part with the us). Matrices with constant diagonals are called Toeplitz matrices and can be constructed with the scipy.
linalg.toeplitz function.

[35]: import scipy

import scipy.linalg

[36]: X1 = scipy.linalg.toeplitz(y.loc[0:9], [0, O])
X1
[36]: array([[O. , 0. 1,
[0.058, O. 1,
[0.217, 0.058],
[0.36 , 0.217],
[0.488, 0.36],
[0.6 , 0.488],
[0.692, 0.6 1,
[0.772, 0.692],
[0.833, 0.772],
[0.888, 0.833]])
[37]: X2 = scipy.linalg.toeplitz(u.loc[0:9], [0, O0])
X2
[37]: array ([[1, O],
(1, 11,
(1, 11,
(1, 11,
(1, 11,
(1, 11,
(1, 11,
1, 11,
(1, 11,
(1, 111
128 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

: X = numpy.hstack ([X1, X2])

: X

]: array ([[O0. , 0. , 1. , 0. 1,
[0.058, O. , 1. , 1. 1,
[0.217, 0.058, 1. , 1. 1,
[0.36 , 0.217, 1. , 1. 1,
[0.488, 0.36 , 1. , 1. 1,
[0.6 , 0.488, 1. , 1. 1,
[0.692, 0.6 , 1. , 1. 1,
[0.772, 0.692, 1. , 1. 1,
[0.833, 0.772, 1. , 1. 1,
[0.888, 0.833, 1. , 1. 11)

Another option is to use the loop from before to construct the matrices. This is a little more legible but slower:

1Y =[]

X = [l
for k in range
Y.append ([

(1, 11):
vl
X.append ([y[
v (
(

k11)
k - 11, ylk - 21, ulk - 1],
Y)

numpy .array (X)

Y = numpy.arra
X

We solve for 3 as we did for linear regression:

beta

0.984647531,
-0.1221125%6],
0.058 1,
0.1012491611)

2.8 Frequency domain

: import sympy

sympy.init_printing /()
$matplotlib inline

2.8.1 Fourier series

ulk - 2]11)

: beta, _, _, _ = numpy.linalg.lstsqg(X, Y, rcond=None)

We can approximate a periodic function of period P to arbitrary accuracy by adding sine and cosine terms (disguised via

the Euler formula in the complex exponential):

n=—N

12mnt

Sn(t) = zNj cnexp< =

2.8. Frequency domain

129

[127:

Dynamics and Control, Release 0.0.1

with

1 [hotP —i2mnt
= = t =) at
c P/to f()eXp< P)

Compare this last equation to the Fourier transform and the Laplace transform:

Fi{} = /_ T) exp(—iwt)dt L{{} = /0 P exp(—st)dt

The following two functions attempt to match the notation above as closely as possible using sympy functions

: import sympy

: i2pi = sympy.I*2*sympy.pi

exp = Sympy.exp

: def S(N):

return sum(c(n) *exp (i2pi*n*t/P) for n in range (-N, N+1)) .expand (complex=True) .
—simplify ()

: def c(n):

return (sympy.integrate (
f(t)*exp((-i2pi * n * t)/P),
(t, t0, t0 + P))/P)

These functions work quite well for a periodic sawtooth function:

:a = sympy.Symbol('a', positive=True)

: def f(t):

return t

: P =20

t0 = -10

: t = sympy.Symbol ('t', real=True)

: analytic_approx = S(N) .expand ()

analytic_approx

@ in ﬂ—t Ein ﬂ—t +@sin 311& §sin 2—7T7f —&-ésin W—t —Esin 3—7rt
7 0M\10) T 7 5) T M\ 10t T 7 5 - 2) 3 5

Notice that the function we defined was just y = ¢, but Fourier series always approximates periodic signals. We can see

the bit we approximated repeating if we plot over a larger interval

interval = (t, tO0O-P, t0+2*P)
pl = sympy.plot (f(t), interval, show=False)
p2 = sympy.plot (analytic_approx, interval, show=False)

p2[0].1line_color = 'red'
pl.extend (p2)
pl.show ()

130 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

fit)

Unfortunately, this notationally elegant approach does not appear to work for £ = sympy.Heaviside, and is also
quite slow. The mpmath library supplies a numeric equivalent.

[13]: try:
import mpmath

except ImportError:
from sympy import mpmath

[14]: cs = mpmath.fourier(f, [t0, tO+P], N)

def numeric_approx(t):
return mpmath.fourierval(cs, [t0O, tO+P], t)

mpmath.plot ([£, numeric_approx], [t0, tO0+P])

10 1

=10 4

-10.0 —]'!.5 =50 25 0.0 25 5.0 75 10.0

The coefficients returned by the mpmath . fourier functions are for the cosine and sine terms in this alternate repre-
sentation of Sy

2.8. Frequency domain 131

[207] :

[20] :

Dynamics and Control, Release 0.0.1

We can see the similarity clearly by showing the expression we obtained before multiplied out and numerically evaluated

: sympy.N(analytic_approx)

2
6.36619772367581 sin (g) —3.18309886183791 sin (?) +2.12206590789194 sin (?gt) —1.59154943091895 sin (;t) +1.273

. Cs

([mpf('0.0"),
mpf('0.0"),
mpf ('0.0"),
mpf ('0.0"),
mpf('0.0"),
mpf ('0.0"),
mpf ('0.0") 1],

[mpf('0.0"),
mpf ('6.366197723675814"),
mpf ('-3.183098861837907"),
mpf ('2.1220659078919377"),
mpf ('-1.5915494309189535"),
mpf ('1.2732395447351628"),
mpf ('-1.0610329539459689"') 1)

Notice that all the cosine coefficients are zero. This is true in general for odd functions.

Step function

Let’s now switch to the Heaviside step and draw the various sinusoids in the approximation more explicitly.

: import matplotlib.pyplot as plt

import numpy
$matplotlib inline

: N = 20

¢ @numpy.vectorize

def f(t):
if t < 0:
return 0
else:
return 1

cs = mpmath.fourier (£, [tO, tO+P],
cs

([mpf

~

~

~

~

~

~

O O O O O o o wm
~

~

N)

(continues on next page)

132

Chapter 2. Dynamics

[23]:

[24]:

Dynamics and Control, Release 0.0.1

(continued from previous page)

mpf ('0.0"),

mpf ('0.0"),

mpf ('0.0"),

mpf ('0.0"),

mpf('0.0"),

mpf ('0.0"),

mpf ('0.0"),

mpf('0.0"),

mpf ('0.0"),

mpf ('0.0"),

mpf('0.0"),

mpf ('0.0"),

mpf ('0.0') 1,

[mpf ('0.0"),

mpf ('0.63675856242795037"),
mpf ('0.0002778345608862911"),
mpf ('0.21262398013873579"),
mpf ('0.00055771310594110598"),
mpf ('0.12802302327076248"),
mpf ('0.00084172518315335683"),
mpf ('0.091931640154520794"),
mpf ('0.0011320535572161288"),
mpf ('0.072015836887865267"),
mpf ('0.0014310262052054015"),
mpf ('0.059459060405769593"),
mpf ('0.0017411752581774926"),
mpf ('0.050872056499090879"),
mpf ('0.0020653060695558258"),
mpf ('0.044674904291434447"),
mpf ('0.0024065804723679999"),
mpf ('0.040032978763113902"),
mpf ('0.002768619592788056"),
mpf ('0.036465018126357898"),
mpf ('0.0031556335077388429") 1)

We see that all the cosine terms but the first are zero, so the first cosine coeflicient represents a constant being added to
the sine series.

constant = c¢s[0][0]
sinecoefficients = cs[1]

I'm constructing two dimensional arrays here which will allow my formulae to work nicely when broadcasting. I'll use the
convention that the time dimension is in the columns and each sine response is in the rows.

tt = numpy.linspace(t0, t0 + P, 1000)

t2d = tt[numpy.newaxis] # two dimensional time array, time in the columns

two dimensional arrays for the sine coefficients and n - they vary in the rows
an = numpy.array (sinecoefficients) [:, numpy.newaxis]

n = numpy.arange (N+1) [:, numpy.newaxis]

This way I can build a whole array of sine responses automatically.

sines = an*numpy.sin (2*numpy.pi*n*t2d/P)

2.8. Frequency domain 133

[25]:

: G

Dynamics and Control, Release 0.0.1

: plt.plot (tt, f(tt))

plt.plot (tt, sines.T, color='blue', alpha=0.7)
plt.axhline (constant, color='blue', alpha=0.7)
plt.plot (tt, sum(sines) + constant)

[<matplotlib.lines.Line2D at 0x112f5ccf8>]

100 - F e

075 |

050

025

0.00 4

—0.25

—0.50 1

100 -75 -50 -25 00 25 50 75 100

We can see that the sum of the sines approximates the step function.

Step response via Frequency response

Let’s compare the result of a “traditional” calculation of a step response of a second order system to a new way which
uses the frequency response of the transfer function and the Fourier series of the step input.

First I am going to find the solution using purely analytic methods.

s = sympy.Symbol ('s")

: tau = 1

zeta = sympy.Rational (1, 2)

We redifine ¢ here to be positive, which will allow us a simple evalutation of the inverse laplace later.

: t = sympy.Symbol ('t', positive=True)

1/ (tau**2*s**2 + 2*tau*zeta*s + 1)
g = sympy.inverse_laplace_transform(G/s, s, t)

Here I build a function which can evaluate the response response numerically. I use the extra argument to make the
function able to work with numpy arrays

: geval = sympy.lambdify(t, sympy.N(g.simplify()), 'numpy')

: gtvalues = geval (tt)

gtvalues[tt<0] = 0

We can see the familiar second order step response:

134 Chapter 2. Dynamics

[32]:

[32]:

[33]:

Dynamics and Control, Release 0.0.1

plt.plot (tt, gtvalues)

[<matplotlib.lines.Line2D at 0x1130£d160>]

12

10 4

0.5 4

06 4

04

02 A

0.0 4

100 -75 -50 -25 00 25 50 75 100

Now, let’s try to get the same answer by exploiting the frequency response of the transfer function. First, we need a function
which can evaluate the transfer function at particular values and return a numeric result. As before I use 1ambdify and
the extra argument to make the function able to work with numpy arrays

Geval

sympy.lambdify (s, G, 'numpy')
Now, we need to build an array for the frequencies of the Fourier series. Remember we had terms of the form sin (@) =
sin(wt) in the Fourier series.

omega

2*n*numpy .pi/P

We evaluate the frequency response of the transfer function at the Fourier frequencies by using the substitution s = wi.
The complex number is j in Python.

freqresp = Geval (omega*17j)

: K = gain = numpy.abs (fregresp)

: phi = phase = numpy.angle (fregresp)

Now, we build the approximation of the respone by simply multiplying by the gain K and shifting by the phase ¢:

r(t) = Kay, sin(2rnt /P + ¢)

shiftedsines = K*an*numpy.sin (2*numpy.pi*n*t2d/P + phi)

: plt.plot (tt, gtvalues)

(
plt.plot (tt, sines.T, color='blue', alpha=0.7)

plt.plot (tt, shiftedsines.T, color='green', alpha=0.7)
plt.plot (tt, sum(shiftedsines) + constant, color='green')
plt.x1im (0, t0 + P)

2.8. Frequency domain 135

[48] :

Dynamics and Control, Release 0.0.1

125

100 4

075 4

050

025 4

0.00 _"":-';':--:'-_ e e -":..n'.-?_-,-"__‘-._-_.;:-.'-:'
— ‘S
035 = ~— < ——
—0.50 4
-0.75

from IPython.display import Audio

import numpy
import matplotlib.pyplot as plt
$matplotlib inline

2.8.2 What does a sinusoid sound like?

We all have advanced frequency detectors in our ears. This notebook will show how listening to signals gives you a whole
different way to understand the frequency domain.

We start by constructing a musically relevant note as a pure sine wave

fs = 44100 # sampling frequency, Hz This is the rate at which CDs are sampled.
T = 0.5 # note length, seconds

A = 440 # Note frequency, Hz

twopi = 2*numpy.pi

t = numpy.linspace (0, T, int(T*fs), endpoint=False) # time variable
dt = t[1] # Sampling time
def note (frequency) :
return numpy.sin (twopi*frequency*t) # pure sine wave at 440 Hz

load a NumPy array
Audio (note (A), rate=fs)

<IPython.lib.display.Audio object>

Now we construct the Chromatic 12 note scale:

Chromatic scale

136 Chapter 2. Dynamics

https://en.wikipedia.org/wiki/Twelfth_root_of_two

[56]:

[56]:

Dynamics and Control, Release 0.0.1

scalet = numpy.linspace (0, T*13, int(T*fs*13), endpoint=False)
scale = numpy.concatenate ([note (A*2**(i/12.)) for i in range (13)])

: Audio (scale, rate=fs)

<IPython.lib.display.Audio object>

Of course, this is quite a large number of points, you can’t really see what’s going on

: plt.plot (scalet, scale)

[<matplotlib.lines.Line2D at 0x124602b70>]

100 A

075 1

050

025 A

000

—0.25 A

—0.50 1

—0.75 1

—1.00

You can see the sinusoids better if you zoom in

Nzoom = 1000
plt.plot (scalet[:Nzoom], scale[:Nzoom])

[<matplotlib.lines.Line2D at 0x11b71b208>]

ol 1 N

050 A

025 A

000 A

—0.25 A

—0.50 1

= VTV

=1.00 1

T T T T T
0000 0.005 0010 0015 0020

Let’s listen to the effect of running this through a first order filter.

2.8. Frequency domain

137

[57]:

[58]:

[58]:

[59]:

Dynamics and Control, Release 0.0.1

We'll use the convolution, so we first obtain the impulse response of the filter

omega = 440*twopl # (440 cycles/second)* (2 pi radians / cycle)
tau = 1/omega
first_order_impulse = numpy.exp(-t/tau)

plt.plot (t[:Nzoom], first_order_impulse[:Nzoom])

[<matplotlib.lines.Line2D at Oxllcc9cef0>]

104

0.8

0.6

0.4

02 A

0.0 4

0.000 0.005 0010 0015 0020

Then we calculate the output signal via convolution. Recall that when we wrote y(s) = G#(s)u(s), this was equivalent to
calculating y(t) = g7(t) * u(t) where the * represents convolution. In this case the filtered signal is y(¢) and the original
scale is u(t).

def filtersignal (signal):

return numpy.convolve (signal, first_order_impulse, 'same')/len(signal)*len(first_
—order_impulse)

filtered = filtersignal (scale)

As a side note: This is not how filtering is done in practice, you can see this process takes a while.

: Audio (filtered, rate=fs)

<IPython.lib.display.Audio object>

Can you hear how the sound gets softer as the frequency goes up? This is the effect of the filter. If we plot the whole
waveform we can clearly see the amplitude going down in steps.

: plt.plot (scalet, filtered)

[<matplotlib.lines.Line2D at 0x118c3fa20>]

138 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

075

050 A

025 A

000 A

—0.25 A

—0.50 1

—0.75 A

When we zoom in so that we can see the wave forms, we can see that the low frequencies are attenuated less than the high

frequencies.

[62]: plt.plot(scalet[:Nzoom], scale[:Nzoom],
scalet [:Nzoom], filtered[:Nzoom])

[62]: [<matplotlib.lines.Line2D at 0x129127e10>,
<matplotlib.lines.Line2D at 0x129127£60>]

E (l ||| '\ | {/\\ m /\|

025 |

iy
=1

’\W 1\5

=1.00 A

T T T T T
0000 0.005 0010 0015 0020

[63]: start = int (f£s/T)*3

[64]: plt.plot (scalet[start:start+Nzoom], scale[start:start+Nzoom],
scalet [start:start+Nzoom], filtered[start:start+Nzoom])

[64]: [<matplotlib.lines.Line2D at 0x12565d1d0>,
<matplotlib.lines.Line2D at 0x12565d320>]

2.8. Frequency domain

139

Dynamics and Control, Release 0.0.1

100 -
0.75 -
0.50 -
0.25 | |

000 A |‘

—0.25 A

—0.50 1

=0.75 1

=1.00 1

T T T T T
2000 6005 6010 £015 6020

But signals aren’t pure sinusoids

Why have I chosen pure sinusoids to play with here? Because they can be combined to form all the other signals via
Fourier series. Just to show that everything still works even when we don’t have pure sinusoids, let’s form a chord, which
will be three sinusoids playing together. I'll build a major chord in just intonation.

I'll also use the highest note an octave higher so that we can hear the filtering effect more clearly. I'm using t i 1e here to
repeat the sample a couple of times to make the sound longer.

: notes = [A, A*5/4, A*3/2*2]

: chord = numpy.tile(l1/len(notes) *sum(note(n) for n in notes), 3)

We can see that this is no longer a simple sinusoid

: plt.plot (scalet[:Nzoom], chord[:Nzoom])

[<matplotlib.lines.Line2D at 0x12a146d68>]

075

050

025 A

000

—0.25 A

—0.50 1

=075 4

T T T T
0000 0005 0010 0015 0020

140 Chapter 2. Dynamics

https://en.wikipedia.org/wiki/Major_chord

[74]:

[75]:

[77]:

Dynamics and Control, Release 0.0.1

: Audio (chord, rate=fs)

<IPython.lib.display.Audio object>

filtered = filtersignal (chord)

: Audio (filtered, rate=fs)

<IPython.lib.display.Audio object>

Numeric Fourier Transform

We can obtain an approximation of a Fourier transform of a signal by using the Fast Fourier Transform (fft). Functions
relating to the fft are found in numpy . £ft.

First we calculate the fft using r££t. The r stands for “real”, because we have a signal containing only real values. If
we use numpy . ££t . ££t it assumes that the signal could contain complex values and returns twice as many values.
numpy . fft.tfftfreqisused to calculate the frequencies for which r £ £t has calculated the values.

fft = numpy.fft.rfft (chord)
fftfreq = numpy.fft.rfftfreqg(len(chord), dt)

When we plot the gain part of this signal, we can clearly see the peaks at the frequencies of the sinusoids from before.

def bodegain (fft):
plt.loglog (fftfreq, numpy.abs (fft))

def shownotes() :
for n in notes:
plt.axvline (n, color='grey', alpha=0.8)

: bodegain (fft)

shownotes ()

10° 1

107 1

1|}—3 5

1077 1

1077 1

10~ 1z

1|}—1:- -

T T
10° 1ot 10° 104 1

Now, let’s look at the filtered version

filtered_fft = numpy.fft.rfft (filtered)

2.8. Frequency domain 141

Dynamics and Control, Release 0.0.1

[78]: bodegain (filtered_f£fft)
shownotes ()

10¢ 4

1|]3 -

107 4

10° 4

107 4

1° 1t 1 10® 1

It’s clear how the lower frequencies are attenuated (made smaller) by the filter.

We can also work backwards from the measured signals to obtain the frequency response of the system. Consider that

ais) = X8 o Gliw) = 4

[79]: Gfreq = filtered_fft/fft

[80]: plt.loglog(fftfreq, numpy.abs (Gfreq))

[80]: [<matplotlib.lines.Line2D at 0x12ad5a630>]

101? p

108 1

10% 1

10°

10° 1

107 1

1 1t 1 10® 1

The gain is a bit strange (very large) here because we used a pure sinusoidal signal to start with, with no low frequency
content, but we can still see the characteristic shape of a first order transfer function.

142 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

But that sounds terrible

Pure sinusoids are not in fact all that musical, let’s rather use a proper song.

You can convert from MP3 to wav using one of these techniques

[81]: import scipy.io.wavfile

I've used “Wedding Day” by SAINt JHN here. I think 7 seconds falls within fair use. You might want to use your own

favourite song to hear the differences clearly.

[88]: samplingrate, song = scipy.io.wavfile.read('../../assets/weddingday.wav')
[89]: dt = 1/samplingrate

[90]: samplelength = 7*samplingrate
songsample = song.sum(axis=1) [:samplelength]

[91]: plt.plot (songsample)

[91]: [<matplotlib.lines.Line2D at 0x1257aa240>]

B0000 4

40000 1

20000 1

u_

—20000 1

—40000 1

—&0000 4

T T T T T T T
0 50000 100000 150000 200000 250000 300000

[92]: plt.plot (songsample[100000:1050007)

[92]: [<matplotlib.lines.Line2D at 0x12ad78£f60>]

2.8. Frequency domain

143

http://www.wikihow.com/Convert-MP3-to-WAV

[98]:

Dynamics and Control, Release 0.0.1

40000

20000 1

—20000 1

—40000 4

—a0000 1

T T T T T
0 1000 2000 3000 4000 5000

Let’s first hear what it sounds like unfiltered.

songsample[100000:105000]

array ([-5346, —-4772, -4268, .., 35405, 34417, 33684])

: Audio (songsample, rate=samplingrate)

<IPython.lib.display.Audio object>

Now with one pass through the filter

filtered = filtersignal (songsample)
Audio(filtered, rate=samplingrate)

<IPython.lib.display.Audio object>

We can filter the signal a second time to really hear the high notes fall away.

filtered = filtersignal (filtered)
Audio (filtered, rate=samplingrate)

<IPython.lib.display.Audio object>

songfft = numpy.fft.rfft (songsample)
filteredfft = numpy.fft.rfft (filtered)
fftfreq = numpy.fft.rfftfreg(len(songsample), dt)

bodegain (songfft)
bodegain (filteredfft)

144 Chapter 2.

Dynamics

[43]:

[44]:

[45] :

[46]:

Dynamics and Control, Release 0.0.1

107 4
104 4
107 4
10° 4
107 A
10¢ 4

1,03 E

102 3 T T T T T T
107! 10° 10* 10° 10° 10¢

Let’s see what the effect of the filter looks like as a function of frequency.

: Gfft = filteredfft/songfft

omega = numpy.logspace (0, 5, 1000)
s = lj*omega
Gw = 1/ (tau*s + 1)

gain = numpy.abs (Gw)

plt.loglog (fftfreqg, numpy.abs(Gfft))
plt.loglog(omega, gain)
plt.axvline (1/tau, color='red')

<matplotlib.lines.Line2D at 0x11a7d5978>

107 4

10 4

10° 4

1071 4

1077 4

107F 4

107 4

10t 1° 1t 10# 10® 10 1

2.8. Frequency domain

145

[12]:

[127:

Dynamics and Control, Release 0.0.1

2.8.3 Frequency response plots

Frequency responses are very easy to calculate numerically if we remember that the frequency domain is basically the
part of the Laplace domain on the imaginary axis, or mathematically s = iw

import numpy

import matplotlib.pyplot as plt
$matplotlib inline

Frequency responses often make use of logarithmic scales, so we’ll generate logaritmically spaced points. This will be
linearly spaced on a logarithmic scale:

omega = numpy.logspace (-2, 2, 1000)
s = omega*lj

It is important to realise that omega and s are just collections of numbers:

omegal:5]

array ([0.01 , 0.01009262, 0.0101861 , 0.01028045, 0.01037567])
s[:5]
array ([0.+0.017 , 0.+0.010092629, 0.40.0101861F , 0.+0.010280457,

0.+0.0103756731)

As an example, we can use a first order transfer function

taul = 2
Gl = 1/ (taul*s + 1)

and a second order with complex poles

tau = 1
zeta = 0.5

G2 = 1/ (tau**2*s**2 + 2*tau*zeta*s + 1)

Similarly to omega and s, G1 and G2 are just arrays.

G1[:5]

array ([0.99960016-0.0199923 , 0.99959272-0.020177027,
.99958515-0.0203637575, 0.99957743-0.020552217,
0.99956957-0.020742473 1)

o

G2[:5]

array ([0.99999999-0.010001j , 0.99999999-0.010093657,
0.99999999-0.010187163j, 0.99999999-0.010281537,
0.99999999-0.0103767831)

146 Chapter 2. Dynamics

[14]:

[15]:

[16]:

Dynamics and Control, Release 0.0.1

2.8.4 Bode

Bode diagrams are the most common plots. The magnitude and angle of the frequency response is shown as a function
of frequency. This is such a common representation that when most control engineers say something like “Show me the
Frequency response” they will mean “Show me a Bode diagram”.

: def bode (G) :

fig, [ax_mag, ax_phase] = plt.subplots (2, 1)
ax_mag.loglog (omega, numpy.abs(G))
ax_phase.semilogx (omega, numpy.angle (G))

bode (G1)
ll}':l o
1|}—1 -4
ID—Z -
00 102 10! 10° 10° 10
_|:|5 4
=1.0
-1.5 1
102 10! 100 10t 10°
bode (G2)
1|}—1 4
1|}—3 -
102 10! 10° 1! 10°
I} .
-1 A
—7
_3 4

1072 10t 107 1ot 10#

It is easy to predict how the product of the two functions would look since both plots add together when the transfer
functions are multiplied.

bode (G1*G2)

2.8. Frequency domain

147

Dynamics and Control, Release 0.0.1

10-1 4
1072 4
10-% 4
T T T T T
102 10! 10 10t 10°

|
Ped [=] Pl
L L L

T
1072 1t 10° 10t 10#

2.8.5 Phase unwrapping

Wait... What happened in that plot? That discontinuity happens when the angle reaches —7 and starts counting positive
angles, jumping to . To get rid of this, we need to redefine our Bode function to use the function numpy . unwrap
which removes discontinuities by subtracting an appropriate multiple of 27.

[17]: def bode (G) :
fig, [ax_mag, ax_phase] = plt.subplots (2, 1)
ax_mag.loglog (omega, numpy.abs(G))
ax_phase.semilogx (omega, numpy.unwrap (numpy.angle (G)))

[18]: bode (G1*G2)

10-1 4
103 4
10-% 4
T T T T T
102 1! 1 10t 10#

| |
L= Ped [
i i i

T T
1072 107! 10° 1! 10°

Much better.

148 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

2.8.6 Nyquist

Nyquist diagrams are simply the real and imaginary components of the frequency response plotted on a plane. By con-
vention not only the positive frequencies are plotted but the negative as well. This is the image of G(s) as s traverses the
entire imaginary line.

[19]: def nyquist (G) :
plt.plot (G.real, G.imag,
G.real, -G.imag)
plt.xlabel ('Real')
plt.ylabel ('Imag')
plt.axis('equal')

[20]: nygquist (G1l)

04 4

[21]: nyquist (G2)

104

05 4

00 4

Imag

=1.0 4

10 -05 00 0.5 10 15 20
Real

[22]: nyquist (G1*G2)

2.8. Frequency domain 149

Dynamics and Control, Release 0.0.1

08 | J—
0.6 - ,
\\
04
02

00 4

Imag

-0.2 4

—0.4 1

—0.6 4

—0.8 4

Real

You can see an extra 90° twist for every order below the line.

2.8.7 With the control library

The control library saves us some typing to create these diagrams:

[23]: import control
[24]: G = control.tf (1, [tau**2, 2*tau*zeta, 1])

[25]: control.bode (G, omega);

=

=
-
L

Magnitude

1|}—3 g

T T
10 1! 10° 10! 10#

Phase (deg)
|
[+
(==}

T T T T
102 107! 109 10t 102
Frequency (rad/sec)

[26]: control.nyquist_plot (G, omega);

150 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

---"...

10 A l,.-""r ------- “-.,__
J"-' hh
Fa
Fi
'
05 !
L]
%
Y
L
“H
o4 + =
05
“1.0 4
100 —075 -050 —025 000 025 050 075

2.8.8 Asymptotic Bode diagrams

100

One of the big advantages of Bode diagrams is that they are very easy to sketch out by hand (or, equivalently, to visualise

mentally).

: import numpy

import matplotlib.pyplot as plt
$matplotlib inline

omega =
s

numpy . logspace (-2, 2,
1j*omega

1000)

2.8.9 Systems with real poles

Let’s study the bode diagrams of systems of the form

K

: def annotated_bode (ax_gain,

high_freqg asymptote =

Gain part

ax_phase,

G, K, tau,

K/ (tau*omega) * *order

order) :

ax_gain.
ax_gain.
ax_gain.
ax_gain.
ax_gain.
ax_gain.

Phase

loglog (omega,
axhline (K,
loglog (omega,
axvline (1/tau,

set_ylim([le-2,

color='grey')

numpy .abs (G))
Rule 1
high_freqg_asymptote,

color='grey')

color='"grey')
le+1])

set_ylabel (" |G| ")

part

Rule 2

Rule 2

(continues on next page)

2.8. Frequency domain

151

Dynamics and Control, Release 0.0.1

def

(continued from previous page)

ax_phase.axhline (0, color='grey') # Rule 3
ax_phase.semilogx (omega, numpy.unwrap (numpy.angle (G)))
ax_phase.axhline (-numpy.pi/2*order, color='grey') # Rule 4
ax_phase.axvline(1/tau, color='grey') # Rule 5
ax_phase.set_ylim([-3*numpy.pi/2, 2*numpy.pi/2])
ax_phase.set_ylabel (r'$\angle GS$')

plotresponse (order=1, tau=1l, K=1):
G = K/ (tau*s + 1) **order

fig, [ax_gain, ax_phase] = plt.subplots (2, 1)
annotated_bode (ax_gain, ax_phase, G, K, tau, order)

from ipywidgets import interact

interact (plotresponse, order=(-2, 3), tau=(0.1, 10), K=(-1., 2));

interactive (children=(IntSlider (value=1, description='order',K max=3, min=-2),.
—FloatSlider (value=1.0, descripti..

We see that we can construct a reasonable approximation by knowing a couple of things

1.
2.

The gain (K) of the system defines the low frequency asymptote of the gain graph
K

(wr)™ "

The high frequency asymptote of the gain is Effectively, on a loglog scale, this means we have -n/decade

slope above frequencies of around 1/7
The low frequency phase asymptote is O
The high frequency phase asymptote is —n /2

The phase curve has an inflection at 1/7

2.8.10 Systems with complex poles

Systems with complex poles show uniique frequency response behaviour. We will focus on the second order system shown
below:

def

_ K
12824 27(¢s+ 1

plotresponse (K=1, tau=1l, zeta=1l):
plt.figure(figsize=(15, 5))

order = 2

G = K/ (tau**2*s**2 + 2*tau*zeta*s + 1)

ax_gain = plt.subplot2grid((2, 2), (0, 0))
ax_phase = plt.subplot2grid((2, 2), (1, 0))
ax_complex = plt.subplot2grid((2, 2), (0, 1), rowspan=2)

annotated_bode (ax_gain, ax_phase, G, K, tau, order)

poles
poles = numpy.roots([tau**2, 2*tau*zeta, 1])
ax_complex.scatter (poles.real, poles.imag)

(continues on next page)

152

Chapter 2. Dynamics

[10]:

[10]:

Dynamics and Control, Release 0.0.1

(continued from previous page)

ax_complex.axhline (
ax_complex.axvline (
ax_complex.axis ([-2, 2, -2, 2])

0)
0)

interact (plotresponse, K=(0.1, 2), tau=(0.1, 2), zeta=(0., 1.1))

interactive (children=(FloatSlider (value=1.0, description='K', max=2.0, min=0.1),.
—FloatSlider (value=1.0, descri..

<function __main__ .plotresponse (K=1, tau=1l, zeta=1l)>

We see that the rules from before still hold, except that we start seeing the so-called “harmonic nose” emerge when
¢ < v/2/2 ~ 0.7. The maximum of the nose occurs at the resonant frequency of

V1I=2¢2

T

Wy

2.8.11 Dead time

The effect of dead time is to increase the phase lag indefinitely as a function of frequency. Delay has no effect on the gain
of a system.

D=1

G = numpy.exp(-D*s)

plt.semilogx (omega, numpy.unwrap (numpy.angle(G)))

[<matplotlib.lines.Line2D at 0x117a944e0>]

=100 1

1w 1t 1 1t 10°

2.8. Frequency domain 153

[9]:

Dynamics and Control, Release 0.0.1

2.9 Sampled systems

: import numpy

import matplotlib.pyplot as plt
matplotlib inline

from ipywidgets import interact, Checkbox
f = numpy.sin

Let’s generate a signal and sample it

: maxt = 100

t = numpy.linspace (0, maxt, 1000)
y f(t)

: def show_sampled(T=6.7, show_f=True):

t_sampled = numpy.arange (0, maxt, T)
y_sampled = f (t_sampled)

if show_f:

plt.plot(t, V)
plt.scatter (t_sampled, y_sampled)
plt.axis ([0, maxt, -1.1, 1.11])

interact (show_sampled, T=(0.1, 10), show_f=Checkbox());

100 - o ®
0.75 .
0.50 -
0.25 1 .
0.00 §
-0.25
~0.50 -

=0.75 1

=1.00 .

o 20 40 20

B0

100

The default sampling rate in the demo above illustrates the idea of aliasing, where a higher frequency sinusoid can mas-
querade as a lower frequency one. We can avoid this problem by ensuring that we sample at least twice per cycle for the
highest frequency in the signal we are sampling. See the Wikipedia page on the Nyquist-Shannon sampling theorem for

more information.

: import matplotlib.pyplot as plt

smatplotlib inline

: import numpy

154

Chapter 2. Dynamics

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

Dynamics and Control, Release 0.0.1

[3]: from tbcontrol.responses import sopdt

2.9.1 Strategies for filtering out noise from a sampled signal

In some cases our measurements have been altered by some kind of noise. Commonly this is “white noise”, which is
normally distributed with zero mean.

[4]: N = 100

[5]: t = numpy.linspace (0, 70, N)

[6]: y = sopdt(t, K=1, tau=5, zeta=0.6, theta=10)
[7]: ym = y + numpy.random.randn (N)*0.1

[8]: plt.scatter(t, ym)

plt.plot(t, vy)

[8]: [<matplotlib.lines.Line2D at 0x11a9b65d0>]

124

104

05 4

0.6 4

04

02 A

0.0

-0.2 A

Pandas

Pandas includes many common filtering strategies in an easy-to-use package. Let’s get the data into a DataFrame.

[9]: import pandas
[10]: df = pandas.DataFrame({'t': t, 'yv': vy, 'ym': ym}).set_index('t")

[11]: def noisy_and_original():
df['ym'] .plot (style=".")
df['y'] .plot ()

[12]: measured = df['ym']

2.9. Sampled systems 155

[13]:

[14]:

Dynamics and Control, Release 0.0.1

noisy_and_original ()

121 v
10
08 - o
06 -
0.4 -
02 - 4
0.0 o2 —

024 *

2.9.2 Moving averages

Moving averages are a very common way to filter out noise. The idea is to average together a certain number of samples
to get the value of a sample. This operation is common enough that it can selected as a dropdown option in Excel.

def moving (center=False) :
noisy_and_original ()
for window in [5, 10, 207]:
measured.rolling(window,

center=center) .mean () .plot (label=window)

plt.legend()

moving ()

124

10+

0.8

0.6

04+

02z

0.0

024 °

As with all causal filters (filters which only use information from before the point at which they calculate a value) we see
that the filter introduces a delay between the original signal and the filtered signal.

In Pandas it is easy to get a less delayed result by using a centered moving average (where points before and after the

156 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

reported time are used).

[15]: moving (center=True)

124

104

0.5

06 4

0.4

02

0.0 4

0249 °

Note that these signals are much closer to the original data. As a general rule, non-causal filters outperform their causal
counterparts at the cost of having to be done offline. However, also notice that the wider windows are making the response
look less sharp at the start and suppressing the overshoot.

Exponentially weighted moving average

Pandas also includes an easy way to produce exponentially weighted moving averages. These are the digital equivalent of
first order analog filters.

[16]: noisy_and_original ()
for alpha in [0.1, 0.2, 0.3]:
measured.ewmn (alpha=alpha) .mean () .plot (label=alpha)
plt.legend()

[16]: <matplotlib.legend.Legend at 0Oxllcc8a2d0>

124

104

0.8 4

06 4

04

02

0.0 4

024 °

2.9. Sampled systems 157

Dynamics and Control, Release 0.0.1

2.9.3 The z-transform

This notebook shows some techniques for dealing with discrete systems analytically using the z transform

: import sympy

sympy.init_printing/()

: import tbcontrol

tbcontrol.expectversion('0.1.2")

: s, z = sympy.symbols('s, z')

k = sympy.Symbol ('k', integer=True)
Dt = sympy.Symbol ('\Delta t', positive=True)
Definition
The 2 transform of a sampled signal (f*(¢)) is defined as follows:
(oo}
2] =) fkat"
k=0

Note The notation is often abused, so you may also encounter * Z[f(t)], which should be interpreted as having the sam-
pling implied * Z[F'(s)], which implies that you should first calculate the inverse Laplace and then sample, so something
like Z[F(s)] = Z[L7'[F(s)]] = Z[f(t)] * Seborg et al use Z[F(s)] to mean the transfer function of F'(s) with a
sample and zero order hold in front of it, which in these notebooks will be expressed as Z[H (s) F'(s)].

Direct calculation in SymPy

For a unit step, f(¢) = 1 and we can obtain the z transform as an infinte series as follows:

: unitstep = sympy.Sum(l * z**-k, (k, 0, sympy.oo0))

unitstep

. o©
> =
k=0

Sympy can recognise this infinite series as a geometric series, and under certain conditions for convergence, it can find a
finite representation:

: shortform = unitstep.doit ()

shortform
1 1
{ 1 for] < 1
Y oheo? otherwise

To extract the first case solution, we use args:

: uz = shortform.args[0] [0]

Notice what has happened here: we have taken the infinite series and written it in a compact form. You should always
keep in mind that these two forms are equivalent.

158 Chapter 2. Dynamics

[12]:

Dynamics and Control, Release 0.0.1

Transfer functions from difference equations

For a first order difference equation (the discrete equivalent of a first order differential equation):

y(k) + ary(k — 1) = biu(k — 1)

—n

If we interpret 2~ " as an n time step delay, can write
Zly(k —n)] = Y ()2
This transforms our difference equation to
Y (2) +a127 Y (2) = bi2z7'U(2)
Leading to a discrete transfer function:

Y(z) bzt
U(z) 1+az7!

G(z) =

Unfortunately, sympy simplifies this expression using positive powers of z

:al, bl = sympy.symbols('al, bl')

: Gz = bilixzr*x—1/ (1 £ ali*xz**—1})

Gz .cancel ()

by
a1 + z

Since I have not found an easy way to get sympy to report negative powers of z, I find it convenient to define

q==z

: g = sympy.symbols('qg')

: def gsubs(fz):

return fz.subs ({z: g**-1})

: gsubs (Gz)

biq
aiq+1

Responses and inversion

To find the response of this system to the unit input, we can multiply the input and the transfer function. Note that this is

equivalent to convolution of the polinomial coefficients.

vz = Gz*uz
gsubs (yz)
biq

T (g D)

Let’s evaluate that with numeric values for the coefficients:

2.9. Sampled systems

Dynamics and Control, Release 0.0.1

: K = 2 # The worked version in the textbook uses 2 even though the text says 20
tau = 1

: Dt =1

: parameters = {al: -sympy.exp (-Dt/tau),
bl: K*(1 - sympy.exp(-Dt/tau))
}

stepresponse = yz.subs (parameters)

Remember that the z transform was defined using the values of the sampled signal at the sampling points.

ZIF) = 3 FkAD=F = F(0) + F(AD= + F2A8)272 4 -

k=0

To obtain the values of the response at the sampling points (also called inverting the z transform), we need to expand the
polynomial. We can do this using Taylor series. Sympy has a Poly class which can extract all the coefficients of the
polynomial easily.

: N =10

: gpoly = sympy.Poly(gsubs (stepresponse) .series(q, 0, N).removeO(), q)

gpoly

1: Poly (1.99975318039183(19 + 1.99932907474419¢% + 1.99817623606889¢" + 1.995042495646674¢° + 1.98652410600183¢° + 1.96:

: gpoly.all_coeffs ()
]: [1.99975318039183, 1.99932907474419, 1.99817623606889, 1.99504249564667, 1.98652410600183, 1.96336872222253, 1.90042

Notice that the coefficients are returned in decreasing orders of ¢, but we want them in increasing orders to plot them.

: responses = list (reversed(gpoly.all_coeffs()))

We'll be using this operation quite a lot so there’s a nice function in tbcontrol . symbolic that does the same thing:

: import tbcontrol.symbolic

: responses = tbcontrol.symbolic.sampledvalues (stepresponse, z, N)

: import matplotlib.pyplot as plt

import numpy

: smatplotlib inline

We'll compare the values we obtained above with the step response of a continuous first order system with the same
parameters:

: sampledt = Dt*numpy.arange (N)

: smootht = numpy.linspace (0, Dt*N)

160 Chapter 2. Dynamics

[26]:

[27]:

[27]:

Dynamics and Control, Release 0.0.1

analytic_firstorder = K* (1 — numpy.exp (-smootht/tau))

plt.stem(sampledt, numpy.array(responses, dtype=float))

plt.plot (smootht, analytic_firstorder)

[<matplotlib.lines.Line2D at 0x2a264c57388>]

200 . 4 : 4 &

175 A

150

125 A

100 A

075 1

050 1

025 1

0.00 1

Calculation using scipy

We can get the same values without going through the symbolic steps by using the scipy.signal library.

import scipy.signal

al = -numpy.exp (-Dt/tau)
bl K* (1 - numpy.exp (-Dt/tau))

Note this uses the transfer function in terms of z (not z~1).

Gz .expand ()
by
ay+ z

Gdiscrete = scipy.signal.dlti (b1, [1, al], dt=1)

: _, response = Gdiscrete.step (n=N)

: plt.stem(sampledt, numpy.squeeze (response))

plt.plot (smootht, analytic_firstorder)

[<matplotlib.lines.Line2D at 0x2a276be5348>]

2.9. Sampled systems

161

[34]:

[37]:

Dynamics and Control, Release 0.0.1

200 4 & 4 . 4

175 A

150 4

125 A

100 A

075 1

050 1

025 1

0.00 1

Calculation using the control libary

import control

Explicitly creating the discrete time transfer function

: G = control.tf (b1, [1, al]l, 1)

1.264

~ 03670 P71

The discrete-time transfer function can also be sampled from the continuous transfer function

: G_continuous = control.tf (K, [tau, 1])

: G_continuous

2
s+1
: G_discrete = G_continuous.sample (1)
: G_discrete
1.264
— dt=1
z—0.3679

We continue with the explisitl transfer function (which is identical to the sampled one)

sampledt, response = control.step_response (G)

162 Chapter 2.

Dynamics

Dynamics and Control, Release 0.0.1

[38]: plt.stem(sampledt, numpy.squeeze (response))
plt.plot (smootht, analytic_firstorder)

[38]: [<matplotlib.lines.Line2D at 0x2a276e57188>]

200 EEEENENN N
175 1
150 1
125 1
100 1
075 1
050 1

025

000

00 25 5.0 5 o 125 150 175

I have found it useful to define

[39]: z = control.tf([1, O], 1, 1)

[40]: z

[407:
dt =1

This allows us to do calculations in a relatively straightforward way:

[41]: step = 1/(1 — z**-1)

[42]: step

If we remember that the inversion of the signal is the same as an impulse response, we can also get the same result as
follows:

[43]: sampledt, response = control.impulse_response (G*step)

[44]: plt.stem(sampledt, numpy.squeeze (response))
plt.plot (smootht, analytic_firstorder)

[44]: [<matplotlib.lines.Line2D at 0x2a277119948>]

2.9. Sampled systems 163

[60]:

[60]:

Dynamics and Control, Release 0.0.1

200 4 [BN BN BN BN BN BN BN BN

175 A

150 A

125 A

100 A

075 1

050 1

025 1

0.00 1

T T
0.0 25 5.0 15 o 15 150 175

The control library also has the capability of sampling a state space system.

: Gss = control.ss (G_continuous)
: Gss

A= [[-1.]]

B = [[1.]]

c = T[[2.]]

D = [[0.]]

Sampling a continuous state space representation will result in a discrete-time state space representation of the system.

Gss.sample (1)

A = [[0.36787944]]
B = [[0.63212056]]
c = [[2.]]

D = [[0.]]

dt =1

Note that MIMO functionality in the cont rol library depends on the s1ycot module. In it’s current revision MIMO
systems cannot be sampled. However you can sample the individual SISO systems from a transfer function matrix,
and then build the discrete-time transfer function matrix, which can be converted to a state-space representation.

: import sympy

sympy.init_printing/()

import matplotlib.pyplot as plt
tmatplotlib inline

import tbcontrol
tbcontrol.expectversion('0.1.3")

There is a difference between the z transform of an impulse response and the equivalent z transform of a continuous

164 Chapter 2. Dynamics

[10]:

[117:

[127:

[13]:

Dynamics and Control, Release 0.0.1

system with a hold element.

Let’s consider the system

s, z, g = sympy.symbols('s, z, g')
K, r, t = sympy.symbols('K, r, t', real=True)
Dt = sympy.Symbol (r'\Delta t', positive=True)

G =K/ (s + r)

The impulse response of this system is simply the inverse laplace transform:

import tbcontrol.symbolic

gt = sympy.inverse_laplace_transform(G, s, t)
gt

Ke "0 (1)

The z transform of this function of time, sampled at a sampling rate of At can be read off the table as

: b = sympy.exp (-r*Dt)

Gz = K/ (1 — b*z**-1)

Let’s choose values and plot the response.

: parameters = {K: 3, r: 0.25, Dt: 2}

import numpy

ts = numpy.linspace (0, 20)

terms = 10

def plot_discrete(Gz, N, Dt):
ts = [Dt*n for n in range (N)]
values = tbcontrol.symbolic.sampledvalues (Gz.subs (parameters), z, N)
plt.stem(ts, values)

def values (expression, ts):

return tbcontrol.symbolic.evaluate_at_times (expression.subs (parameters),

plt.plot (ts, values(gt, ts))
plot_discrete(Gz, terms, parameters|[Dt])

2.9. Sampled systems

165

Dynamics and Control, Release 0.0.1

304

25

20 4

15 4

10 4

05

0.0 4

00 25 5.0 75 100 125 150 175 200

But the value in Table 17.1 is

:al = -b

bl = K/r*(1 - b)
Gz_seborg = (bl * z**-1)/(1 + al*z**-1)

: Gz_seborg

K(1- e‘A”)

—Atr
rz (1 — £ -)

That’s clearly not the same as the discrete transform in the datasheet. What is going on?

The values in the table in seborg are the z transform of the transfer function with a hold element!

The z-transform of this combination can be written Z{H (s)G(s)}. Remember, H(s) = 1(1 — e~2!*). Now we can
show

:nbsphinx-math: begin{align} mathcal{Z }left{ { H(s)G(s) }right} &=
mathcal{Z}left{frac{1}{s}(1 - er{-Ts})G(s)right} \

&= mathcal{Z}left{underbrace{frac{G(s)}{s}}_{F(s)}(1 - e*{-Ts})right} \
&= mathcal{Z}left{F(s) - F(s)e"{-Ts}right} \

&= mathcal{Z}left{F(s)right} - mathcal{Z}left{F(s)e"{-Ts}right} \ &= F(z) - F(z)z"{-1} \ &= F(z)(1 -
zM-1})

end{align}" So the z transform we’re looking for will be F'(z)(1 — 2~1) with F'(z) being the transform on the right of
the table of 1G(s).

To remind ourselves,

|G

r+s

So we’re looking for

166 Chapter 2. Dynamics

Dynamics and Control, Release 0.0.1

[17]: (G/s)
[17] K
s(r+s)
So we should see the same response if we plot this:
There is an element in the table for
a
s(s+a)

which is the same as what we want but multiplied by a. We should be able to use the associated z transform:

[18]: a = ¢
[19]: table_value = (1 - b)*z**-1/((1 - z**=1)*(1 - b*z**-1))

[20]: Fz = K * table_value / a

[21]: Fz * (1 - z**-1) == Gz_seborg
[21]: True
[22]: response = sympy.inverse_laplace_transform(G/s, s, t)

[23]: plot_discrete (Gz_seborg, terms, parameters[Dt])
plt.plot (ts, values (response - response.subs(t, t-parameters[Dt]), ts))

[23]: [<matplotlib.lines.Line2D at 0x1184bacf8>]

00 25 50 75 100 125 150 175 200

2.9. Sampled systems 167

Dynamics and Control, Release 0.0.1

168 Chapter 2. Dynamics

CHAPTER
THREE

CONTROL

3.1 Conventional feedback control

: import matplotlib.pyplot as plt

smatplotlib inline

: from controlgame import ControlGame

: game = ControlGame (runtime=30) # seconds

3.1.1 Instructions

Run the cell below and click the “run” button. Then move the “MV” slider in a way which gets the controlled slider close
to the setpoint. Your score increases more quickly when Controlled is near Setpoint. See how high your score can get by
clicking run a couple of times. To see your performance graphed out, execute the next cell (game .plot ())

: game.ui ()

VBox (children= (HBox (children=(Button (description="Run', style=ButtonStyle()),_
—Text (value='0"', description="'Sco..

: game.plot ()

104

05 A

0.0 4

00 0z 04 0.6 0.3 10

10 4

0.5 A

0.0 4

00 0z 04 06 0a 10

169

[12]:

[137:

Dynamics and Control, Release 0.0.1

import scipy.signal

ts = game.ts
G = scipy.signal.lti(2, [2, 0])
import numpy
LIMIT = 100
def score(ts, sps, cvs):
scores = 1 - numpy.minimum (numpy.abs (numpy.array (sps) - numpy.array(cvs)), LIMIT)/
—LIMIT
score = sum(scores)

return score

def sim(ts, mvs):

—_r CVs, =

return cvs

def objective (mvs) :

return -score(game.ts,

objective (game.mvs)

IndexError
<ipython-input-15-c61c532d40ad> in
—-——-> 1 objective (game.mvs)

<ipython-input-13-96e53751337c> in
1 def objective (mvs) :

—_—> 2 return —-score(game.ts,

<ipython—-input-12-d6eb717acf80> in

1 def sim(ts, mvs) :
———=> 2 _, Cvs, _ =

3

4 return cvs

~/anaconda3/lib/python3.7/site-packages/scipy/signal/ltisys.py in

—X0, interp)
1944 xout = zeros ((n_steps,
1945
-> 1946 if T[O0] == O0:
1947 xout [0] = XO
1948 elif T[O] >

IndexError:

scipy.signal.lsim (G,

game. sps,

scipy.signal.lsim (G,

index 0 is out of bounds for axis

mvs, ts)

sim(game.ts, mvs))

(most recent call last)

Traceback

(mvs)

game.sps, sim(game.ts, mvs))

(ts, mvs)
mvs, ts)
(system, U,

T,

n_states), sys.A.dtype)

0 with size O

170

Chapter 3. Control

Dynamics and Control, Release 0.0.1

import scipy.optimize

guesses = 1
bestmvs = game.mvs
for i in range (guesses) :
sol = scipy.optimize.minimize (objective, bestmvs + 2* (numpy.random.

—rand(len (bestmvs)) *2-1), bounds=[(-LIMIT, LIMIT)]*len(game.mvs))
print ('Score:', -sol.fun)
bestmvs = sol.x
bestmvs [numpy .abs (bestmvs) <10] = 0

bestcvs = sim(ts, bestmvs)

fig, (axmv, axcv) = plt.subplots (2, 1)
axmv.plot (ts, bestmvs)
axcv.plot (ts, game.sps, ts, bestcvs)

3.1.2 PID step responses

Here are some open loop step responses of PID controllers in different configurations.

PI

import control

import numpy

import matplotlib.pyplot as plt
smatplotlib inline

s = control.tf([1, 0], 1)
ts = numpy.linspace (0, 5)

def plot_step_response (G) :

t, vy = control.step_response (G, ts)
Add some action before time zero so that the initial step is visible
t = numpy.concatenate([[-1, 0], t])

y = numpy.concatenate([[0, 0], yI)
plt.plot(t, ¥y)

Gc = K_C*(1 + 1/ (tau_I*s))

plot_step_response (Gc)

3.1. Conventional feedback control

171

Dynamics and Control, Release 0.0.1

PID

Because the ideal PID is unrealisable, we can’t plot the response of the ideal PID, but we can do it for the realisable ISA
PID.

718 atps—+1

1 TDS
R (T

: alpha = 0.1

Il
[N

tau_D

: Gc = K. C*(1 + 1/(tau_I*s) + 1*s/(alpha*tau_D*s + 1))

: plot_step_response (Gc)

10 1

172 Chapter 3. Control

[16]:

[17]:

Dynamics and Control, Release 0.0.1

PD

Gc = K_C*(1 + 1*s/(alpha*tau_D*s + 1))

plot_step_response (Gc)

10 1

3.1.3 First-order system with proportional control

Consider the simple feedback loop shown below

Yop E U

with G. = K, and G, = #ﬂ

: smatplotlib inline

: import sympy

sympy.init_printing/()

: G_c = K_C = sympy.Symbol ('K_C', positive=True)

Y

3.1. Conventional feedback control

173

[11]:

[12]:

Dynamics and Control, Release 0.0.1

s = sympy.Symbol ('s")
tau = sympy.Symbol ('tau', positive=True)

G_p = 1/(tau*s + 1)

G_p
1
sT+1

G_OL = G_p*G_c
from tbcontrol.loops import feedback
The target is to get ysp = y
G_CL = feedback(G_OL, 1) .cancel()
G_CL

K¢

Ke+st+1

t = sympy.Symbol ('t', positive=True)
general_timeresponse = sympy.inverse_laplace_transform(sympy.simplify (G_CL/s),

general_timeresponse

Ko (et(K€+1) 3 1> - t(K€+1)

Ko+1

import numpy
import matplotlib.pyplot as plt
y_func = sympy.lambdify ((K_C, tau, t), general_timeresponse, 'numpy')
smootht = numpy.linspace (0, 5)
def response (K_C=10, tau=10):

y = y_func(K_C, tau, smootht)

e =1-y

fig, [ax_y, ax_e] = plt.subplots(2, 1)

ax_y.plot (smootht, vy)
ax_y.axhline (1)
ax_y.set_ylabel ('Setpoint and y'")

ax_e.plot (smootht, e)
ax_e.set_ylabel ("Error')

Sy

t)

174 Chapter 3. Control

Dynamics and Control, Release 0.0.1

[16]: from ipywidgets import interact

[17]: interact (response, K_C=(0, 100), tau=(0, 20))

interactive (children=(IntSlider (value=10, description='K_C'), IntSlider (value=10,.
—description='tau', max=20),

[17]: <function __main__ .response (K_C=10, tau=10)>

Offset as function of gain
[18]: r = 1/s
[19]: y = r*G_CL
[20]: e =1 - y

Use the final value statement to obtain eventual offset:

[21]: steady_offset = sympy.limit (s*e, s, 0)
steady_offset

[217]: 1
Ke+1

Note the steady state offset is not a function of the system dynamics (time constant).

[22]: sympy.plot (steady_offset, (K_C, 0, 60))

fK_C)
5

05 4

06 4

04

02

0.0 T T T T T 1

[22]: <sympy.plotting.plot.Plot at 0x1141865£8>

3.1. Conventional feedback control 175

[277:

[28]:

Dynamics and Control, Release 0.0.1

Second order system with proportional control
import matplotlib.pyplot as plt
zeta = sympy.Symbol ('zeta')
G = 1/ (tau**2*s**2 4+ 2*tau*zeta*s + 1)
G
1

272 4+ 257C + 1

G_CL = feedback (G*K_C, 1) .cancel ()
G_CL

K¢
Ko+ 82712 +2s7¢C + 1

def response (new_K_C, new_tau, new_zeta):

real CL = G_CL.subs({K_C: new_K_C, tau: new_tau, zeta: new_zeta})

timeresponse = sympy.inverse_laplace_transform(sympy.simplify(real CL/s), s, t)

sympy.plot (timeresponse, 1, (t, 0, 100))

poles = sympy.solve (sympy.denom(sympy.simplify (real_CL)), s)

plt.plot ([sympy.re(p) for p in poles], [sympy.im(p) for p in poles], 'x', .
—markersize=10)

plt.axhline (0, color='black')

plt.axvline (0, color='black")

plt.axis([-1, 1, -1, 11)

interact (response, new_K_C=(0., 100), new_tau=(0, 10.), new_zeta=(0, 2.));

interactive (children=(FloatSlider (value=50.0, description='new_K_ C'),_
—FloatSlider (value=5.0, description='new_..

3.1.4 PID control on TCLab

This notebook and the associated pidgui . py allows you to play with a very basic position form discrete PID using
either a modelled version or the real Temperature control lab.

from tclab.gui import NotebookUI
from pidgui import PIDGUI

smatplotlib notebook
interface = NotebookUI (PIDGUTI)

interface.gui

176 Chapter 3. Control

Dynamics and Control, Release 0.0.1

VBox (children= (HBox (children= (HBox (children= (Checkbox (value=False, description='Use.
—model'), FloatSlider (value=1.0, description='Speedup', disabled=True, max=10.0, .
—min=1.0))), HBox(children=(Button (description="'Connect', style=ButtonStyle()),_
—Button (description="'Start', disabled=True, style=ButtonStyle()), Button(description=
—'Stop', disabled=True, style=ButtonStyle()), Button(description='Disconnect', .

—disabled=True, style=ButtonStyle()))))), HBox(children=(HBox (children=(Label (value=
— 'Timestamp:'), Label (value='No data'), Label (value='"))),_
—HBox (children= (Label (value="'Session:"'), Label (value='No data'), Label (value='"'))))),

— VBox (children=(HBox (children=(Button (description='Auto', disabled=True, .
—style=ButtonStyle()), Button(description='Manual', disabled=True,._
—style=ButtonStyle()))), HBox(children=(FloatSlider (value=1.0, description='Gain', .
—disabled=True), FloatSlider (value=100.0, description='$\\tau_IS$', disabled=True), .
—FloatSlider (value=0.0, description='$\\tau_D$', disabled=True, max=10.0))),_
—HBox (children=(FloatSlider (value=30.0, description='Setpoint', disabled=True, .
—max=70.0, min=20.0), FloatSlider(value=0.0, description='Ql', disabled=True)))))))

TCLab version 0.4.9dev
Simulated TCLab

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

3.1.5 Programmatic interaction

We can interact with the interface while it is running. The controller is in the interface. Note that you will have to start
the controller and switch to auto to see the effect of these cells:

controller = interface.controller

controller.pid.eint 0

controller.setpoint.value = 42

3.1.6 Advanced usage

Below we set up an experiment which will change the setpoint and increase the gain every 10 minutes.

import tornado

def stepgain() :

if controller.setpoint.value == 45:
controller.setpoint.value = 40
else:
controller.setpoint.value = 45

controller.gain.value *= 1.1

if controller.gain.value > 100:
steptimer.stop ()
interface.action_stop (None)

minute = 60*1000 # a minute in milliseconds
steptimer = tornado.ioloop.PeriodicCallback (stepgain, 10*minute)

steptimer.start ()

3.1. Conventional feedback control 177

Dynamics and Control, Release 0.0.1

You can stop the timer by calling . stop ()

steptimer.stop ()

3.1.7 Accessing the historian

The interface contains a historian. You can see the sessions it has stored like this:

interface.historian.get_sessions ()

You can roll the historian back to a session by using 1oad_session. Note you shouldn’t do this while the interface is

connected.

interface.historian.load_session (1)

3.1.8 More detailed analysis

We can analyse the results of the experiments we have made using Pandas:

: import pandas

allresults = pandas.DataFrame.from_records (interface.historian.log,

—historian.columns, index='Time')

3.1.9 Closed loop controlled responses

columns=interface.

I discuss drawing these response qualitatively in this video. Note that the responses that are drawn in the video match the
responses drawn here, but the value of 7; specified there doesn’t show overshoot as in this notebook. The value in the
video is 71 = 10, but that was obviously a bit too large to allow for the extreme oscillation. You can get a similar response
to the one I sketched by using 7; = 1. The value below has been chosen to make the discussion in the video still hold in

the same way.

from tbcontrol.loops import feedback
import control

import matplotlib.pyplot as plt
import numpy

$matplotlib inline

s = control.tf([1, 0], 1)

: Gp = 1/(10*s + 1)

PI = 5*(1 + 1/(10*s))
P =5

: ts = numpy.linspace (0, 30)

Find the time where the error becomes zero by interpolating on the output response

: t, v = control.step_response (feedback (PI*Gp, 1))

errorzero = numpy.interp(l, y, t)

178

Chapter 3. Control

https://youtu.be/8iO_lNuSZYc

[117:

Dynamics and Control, Release 0.0.1

This function will plot a response for us

def plotresponse(ax, G, *args, **kwargs):

ax.plot (*control.s
ax.axvline (errorze

tep_response (G,
ro, color='teal

T=ts), *args, **kwargs)
', linestyle='—-")

I'm trying to get all the colors to match the video here.

fig, (outputs, errors,

errorint, u) =

outputs.plot (ts, numpy.ones_like(ts),
Gp, color='green',

plotresponse (outputs,

plt.subplots (4,
color="black")

label="Gp"')

1, figsize=(5, 10), sharex=True)

label="'Prop with Kc=5")

color="teal', label='PI1'")

plotresponse (outputs, feedback (P*Gp, 1), color='red',
plotresponse (outputs, feedback (PI*Gp, 1),
outputs.set_ylabel ('Output')

outputs.legend()

plotresponse (errors, 1 - feedback (P*Gp, 1), color='red'")

plotresponse (errors, 1
errors.set_ylabel ('e'")

— feedback (PI*Gp,

1), color="teal')

plotresponse (u, feedback (P, Gp), color='red')
plotresponse (u, feedback (PI, Gp), color='teal')

u.set_ylabel('u'")

plotresponse (errorint,
errorint.set_ylabel ('/

(1 - feedback (PI*Gp, 1))/s, color='black")

e');

3.1. Conventional feedback control

179

Dynamics and Control, Release 0.0.1

— Gp

=5

= Prop with Kc

— Pl

5

20

g = R
- s =
ndingy

025 1

000 1

100 4

075 1

a 050

025 A

000 4

20 4

154

& 10

05 4

00 4

Chapter 3. Control

180

[10]:

[117:

[117:

[12]:

Dynamics and Control, Release 0.0.1

3.2 Laplace domain analysis of control systems

3.2.1 Closed loop stability

Stability of closed loop control systems appears to be easy to determine. We can just calculate the closed loop transfer
function and invert the Laplace transform.

: import sympy

sympy.init_printing /()

: tmatplotlib inline

: s = sympy.Symbol ('s")

: K¢, t = sympy.symbols('K_c, t', positive=True)

These are the systems from Example 10.4 in Seborg et al

G_c = K_c

G.v =1/(2*s + 1)

G p=G.d=1/(5*s + 1)
Gm=1/(s + 1)

K m = sympy.limit (G_m, s, O0)

: forward = G_c*G_v*G_p

backward = G_m

G_CL = K_m*forward/ (1 + forward*backward)

: sympy.simplify (G_CL)

K.(s+1)
K.+ (s+1)(2s+1)(bs+1)

:y = G_CL/s

Now for the moment of truth. Uncomment the next line if you have a lot of time on your hands. ..

#yt = sympy.inverse_laplace_transform(y, s, t)

So that didn’t really work as we expected. Can we at least calculate the roots of the denominator?

ce = sympy.denom(G_CL.simplify())
ce.expand ()

K.+ 10s® +17s> +8s+ 1

roots = sympy.solve(ce, s)

OK, that approach works, but is limited in the analytic case to 4th order polynomials

3.2. Laplace domain analysis of control systems 181

Dynamics and Control, Release 0.0.1

[13]: sympy.plot (*[sympy.re(r) for r in roots], (K_c, 1, 20))

tl
e
n: M T al
T T T T T T 1
25 - g 125 150 175 200
-0.25 1 K_c
~0.50 1
-0.75 1
~1.00 1

—lJ5'ﬂﬁ‘hhh““hhhh__hhhtx1

[13]: <sympy.plotting.plot.Plot at 0x11b5e0978>

We can see that one root gets a positive real part around K. = 12.5

3.2.2 Using the control library

We quickly run out of SymPy’s abilities when calculating closed loop transfer functions. Let’s try to do it with the control
library instead:

[14]: import control
import numpy
import scipy.signal
import matplotlib.pyplot as plt
tmatplotlib inline

[15]: s = control.tf([1, 01, [11])

[16]: G_v = 1/(2*s + 1)
G p =Gd=1/(5*s + 1)
Gm=1/(s + 1)
Km=1

[17]: from tbcontrol.loops import feedback

[18]: def closedloop(K_c):
G_c = K_c

G_CL = K_m*feedback (G_c*G_v*G_p, G_m)
return G_CL

[19]: closedloop(2)

2083 + 3452 + 165 + 2
100s® + 240s% 4+ 20953 + 10352 + 295 + 3

182 Chapter 3. Control

[247]:

Dynamics and Control, Release 0.0.1

from ipywidgets import interact
smootht = numpy.linspace (0, 20)
loop = G_v*G_p*G_m

_ = control.rlocus (loop)

/Users/alchemyst/anaconda3/lib/python3.7/site-packages/matplotlib/figure.py:98:.
—MatplotlibDeprecationWarning:
Adding an axes using the same arguments as a previous axes currently reuses the.
—earlier instance. In a future version, a new instance will always be created and.
—returned. Meanwhile, this warning can be suppressed, and the future behavior.
—ensured, by passing a unique label to each axes instance.

"Adding an axes using the same arguments as a previous axes "

Root Locus

15 4

[
=]

=]
LA

Imaginary
& o
] =]
b

|
.y
=

-15 - ,

def response (K_C):
G_CL = closedloop (K_C)
poles = G_CL.pole ()
plt.plot (*control.step_response (G_CL, smootht))
_ = control.rlocus (loop)
plt.scatter (poles.real, poles.imag, color='red')

interact (response, K_C=(1., 20.))

interactive (children=(FloatSlider (value=10.5, description='K_C', max=20.0, min=1.0),
—Output ()), _dom_classes=(..

<function __main__ .response(K_C)>

Now, the step response is calculated quickly enough that we can interact with the graphics using the slider!

3.2. Laplace domain analysis of control systems

183

[26] :

Dynamics and Control, Release 0.0.1

Direct substitution

From our exploration above it is clear there is a zero of the characteristic equation at Ko ~

numerically:

def chareqg(x) :
Kc, omega = x

s = lj*omega
ce = 1 + Kc*loop
ce_of_s = ce(s)

return ce_of_s.real, ce_of_s.imag
import scipy.optimize

scipy.optimize.fsolve (chareq, [13, 1])

array([12.6 , 0.89442719])

How can we determine stability without calculating the roots? See the next notebook.

3.2.3 Why do we need the Routh Array

13. Let’s solve for this

In a previous notebook we showed that we can calculate the roots of the denominator of a closed loop transfer function
to determine stability regions as a function of K.. However, it became clear that analytic calculation of the roots would

only work for lower-order systems.

Using numeric methods seemed to work OK, but involved trial-and-error.

Numeric root finding algorithms are also problematic. Consider finding the roots of (1 + s)'°. We can see that they

should all be -1. Let’s see how well numpy . root s does in finding them.

import numpy

numpy.roots([1, 2, 11)

array([-1., -1.1])

: polynomial = [1]

term = [1, 1]

for i in range(10):

polynomial = numpy.convolve (polynomial, term)
: polynomial

array ([1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 11)

roots = numpy.roots (polynomial)

roots

array ([-1.0486659 +0.016144125, -1.0486659 -0.016144127,
-1.02925286+0.041660797, -1.02925286-0.041660797,
-0.99899397+0.050301245, -0.99899397-0.050301247,
-0.9701264 +0.039747545, -0.9701264 -0.039747547,
-0.95296087+0.0149628773, -0.95296087-0.01496287731)

184

Chapter 3. Control

[10]:

[11]:

Dynamics and Control, Release 0.0.1

We’re making up to 5% error and reporting non-negligable imaginary components, when we know the roots are actually
real. So it’s not that easy to make a call about the nature of the roots of high order polynomials by calculating them
numerically. And it’s not just because the algorithm isn’t good enough. Evaluating one of the roots gives zero to many
decimals. The problem is that computers use finite representations of these numbers.

numpy .polyval (polynomial, roots[0])
(-1.0769163338864018e-13+6.760217385881617e-157)

3.2.4 A better way

The Routh-Hurwitz stabilbility criterion provides an efficient check of stability for closed loop systems which avoids
calculating the roots of a higher-order polynomial and is therefore less error prone if we have numeric coefficients and
actually possible if we have symbolic coefficients (recall we cannot calculate the roots analytically for orders higher than
4).

import sympy
sympy.init_printing /()

s = sympy.Symbol ('s")

a_0, a_1, a_2, a_3, a_4 = sympy.symbols('a_0:5")
p=a_. 0+ a_1l*s**1 + a_2*s**2 + a_3*s**3 + a_4*s**4

Note that we have to convert the expression above to a Poly object to recover all the coeflicients.
p = sympy.Poly(p, s)
p

Poly (a4s4 + a3s® + azs® + a1s + ag, s, domain = 7 [ag, a1, a9, as, a4])

This function constructs the Routh array as given in Seborg.

from tbcontrol.symbolic import routh
help (routh)
Help on function routh in module tbcontrol.symbolic:

routh (p)
Construct the Routh-Hurwitz array given a polynomial in s

Input: p - a sympy.Poly object
Output: The Routh-Hurwitz array as a sympy.Matrix object

routh (p)
Qay az ag
as ay 0
- L;Z‘l + as ag O
apaZ+ay(ajas—azas) 0 0
ajaqs—azaz
aon 0 0

(continues on next page)

3.2. Laplace domain analysis of control systems 185

https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_stability_criterion

[10]:

[11]:

Dynamics and Control, Release 0.0.1

: def rlocus (order,

Let’s try this on example 10.1

: K. c = sympy.Symbol ('K_c'")
ce = 10*s**3 + 17*s**2 + 8*s + 1 + K_c
A = routh (sympy.Poly(ce, s))
A
10
17
10K, 126
ot
K.+1

K.+1

For stability, the left hand column must have entries with all the same signs:

sympy.solve([e > 0 for e in A[:, 0]], K_c)

63

“1<K.NK. < —

3.2.5 Root locus diagrams

5

(continued from previous page)

Root locus diagrams show where the roots of the characteristic equation lie for different values of controller gain. The
control library has a built-in function for plotting these diagrams.

: import control

from matplotlib import pyplot as plt

$matplotlib inline

s = control.tf([1, 0], 1)

tau_p, K):
Gp = 1/ (tau_p*s + 1)**order
Gec =1

L = Gp*Gc

CL = K*L/ (1 + K*L)
control.root_locus (L) ;
control.pzmap (CL)
plt.title('")

from ipywidgets import interact

interact (rlocus, order=(1, 5), tau_p=(0.1, 2.

)y

tau_i=(1.,

20),

K=(0.01, 200))

186

Chapter 3. Control

Dynamics and Control, Release 0.0.1

interactive (children=(IntSlider (value=3, description='order', max=5, min=1), .
—FloatSlider (value=1.05, descripti..

] : <function __main__.rlocus(order, tau_p, K)>

3.3 PID controller design, tuning and troubleshooting

: import sympy

sympy.init_printing/()
$matplotlib inline

3.3.1 Direct synthesis PID design

The direct synthesis design technique has a very appealing premise: we choose the desired closed loop behaviour and then
rewrite the closed loop transfer function to find the controller which will give us this behaviour.

L Gd
Yq
};p iip E P U o Y
o + ¢ G, Gp +
Y
m G,

Specifically, we will specify what we want % to be, given that D = 0. We will also then calculate Yst from the block
diagram and then solve for G¢.

: s, G_C = sympy.symbols('s, G_C")

tau_c, phi = sympy.symbols('tau_c, phi', positive=True, nonzero=True)

Let’s start by choosing a first order plus dead time response for our system. If any of G, or G}, contain dead time, we
cannot avoid that dead time in the response of our system to a setpoint change. Becausre sympy wants to typeset exponents
with positive values, I will be using a transformation ¢ = —6 in this notebook to get forms similar to the textbook.

: desired_Y_over_Y_sp = sympy.exp (phi*s)/ (tau_c*s + 1)

This is what the prototypical response we’ve specified looks like. You can see that 7. specifies the desired speed of the
response. Also notice that the gain is 1, so that the process eventually follows the set point.

: from ipywidgets import interact

3.3. PID controller design, tuning and troubleshooting 187

[11]:

[12]:

Dynamics and Control, Release 0.0.1

t = sympy.Symbol('t', positive=True)
def plotresponse (theta=(0, 3.), tau_c_in=(1., 5.)):
desired_response = sympy.inverse_laplace_transform(desired_Y_over_Y_sp.subs ({phi:._
——theta, tau_c: tau_c_in})/s, s, t)
p = sympy.plot (desired_response, (t, 0, 10), show=False)
p2 = sympy.plot (1, (t, 0, 10), show=False)
p.append (p2[0])
p.show ()
interact (plotresponse);

interactive (children=(FloatSlider (value=1.5, description='theta', max=3.0),.
—FloatSlider (value=3.0, description..

Now, we calculate the closed loop transfer function. We will assume we have a model of the system called G

Gtilde = sympy.Symbol (r'\widetilde ")
actual_Y_over_Y sp = Gtilde*G_C/ (1 + Gtilde*G_C)

To find the controller expression which will achieve our desired response, we simply solve for desired = actual

G_C_solved, = sympy.solve(desired_Y_over_Y_sp - actual_Y_over_Y_sp, G_C)
G_C_solved

e?s

G (s1. —e?s +1)

We will approximate the dead time in the denominator by a first order Taylor expansion. Note that this choice is not
completely unique. In general, we will choose the approximation (Padé or Taylor) which results the correct order of
transfer function in the next steps.

denom = sympy.denom (G_C_solved)
G_C_rational = G_C_solved*denom/denom.subs (sympy.exp (phi*s), 1 + phi*s)
G_C_rational.simplify ()
e?s
Gs (¢ —7c)

Now we can relate this to PID parameters for a general process. Here we have a PID controller expression.

K_C, tau_I, tau_D = sympy.symbols ('K _C, tau_I, tau_ D', positive=True, nonzero=True)
PID = K C*(1 + 1/(tau_I*s) + tau_D*s)
PID.expand() .together ()

Ko (SQTDT[+ s71r + 1)
STT

For reference, we could also go for the ISA realizable controller, but then we’d need a different dead time approximation.

alpha = sympy.symbols('alpha')

ISA = K_C*(1 + 1/(tau_I*s) + tau_D*s/(alpha*tau_D*s + 1))

188 Chapter 3. Control

[15]:

[19]:

[20] :

[217:

Dynamics and Control, Release 0.0.1

: num, den = ISA.cancel () .as_numer_denom ()

: num.collect (s)

Ko+ 82 (KcaTDT[+ Kc’TD’T]) + s (KcaTD + KcT[)

And here we have a second order process with dead time.

K, tau_c, tau_l, tau_2, phi, theta = sympy.symbols ('K, tau_c, tau_l, tau_2, phi, theta
— ', positive=True)

G = K*sympy.exp(phi*s)/ ((tau_1*s + 1)* (tau_2*s + 1))

G

Ke®s
(s71+1)(s72+1)

Our goal is to find the PID parameters which match the rational G we derived earlier.

: target_G_C = G_C_rational.subs(Gtilde, G).expand() .together ()

We will create an object to hold on to equality in residual form (G, = Gp;p < G.—Gpip =0

zeroeq = (target_G_C — PID) .simplify ()

: numer, denom = zeroeq.as_numer_denom/()

eq = sympy.poly (numer, s)

The following straightforward solution of the equations yields the correct result.

egs = eqg.coeffs ()

eqgs

(-KKc¢rprr + KKctprme — mimetr, —KKeor + KKetir, — ity — 1911, —KKe¢ + KKote — 74]

sympy.solve (eqs, [K_C, tau_D, tau_I], dict=True)

T1 + T2 T1T2
Ke:—F—"—, ™m:———, 1T71:T1+T
H ¢ K(¢—1) RS e 2”

Note that neglecting the dict=True argument above does not currently work for Python 3.6 (see this issue). If the
solution process fails for you, read on below.

3.3. PID controller design, tuning and troubleshooting 189

https://github.com/sympy/sympy/issues/14607

[23]:

[23]:

Dynamics and Control, Release 0.0.1

Alternate solution

If the simple solution above didn’t work, we can do it a little more manually. Look at those equations again

1 egs

[-KKcérprr + KKetpTi7e — T2, —KKe¢r + KKotime — 1111 — 1271, —KKed+ KKt — 7]

With a little bit of help from us to choose the correct order to solve, we can get the solution in the book.

solution = {}

solution[K_C] = sympy.solve(eqgs[l], K_C) [0]

solution[tau_D] = sympy.solve(egs[0], tau_D) [0].subs(solution)
solution[tau_I] = sympy.solve(egs[2], tau_I)[0].subs(solution) .simplify ()
solution

T + T2 T1T2
Ke:——F——, P, :
{ CTEK@G-n) Piman T 71+T2}

3.3.2 Minimal integral measures

One approach to finding controller parameters is to minimise some error measure with respect to the parameters. We
will simulate a first order plus dead time system under PI control. The block diagram here is for simple feedback:

Yop E U

Y

: import numpy

import scipy.signal

import scipy.optimize

import matplotlib.pyplot as plt
from tbcontrol import blocksim
$matplotlib inline

This is the 1,1 element of a Wood and Berry column (see eq 16-12)
K= 12.8

(continues on next page)

190 Chapter 3. Control

Dynamics and Control, Release 0.0.1

tau = 16.7
theta = 1
: ts = numpy.linspace (0, 2*tau, 500)

tau_i = 1

return numpy.array (diagram.simulate(ts)['v'])

What does the setpoint response look like?

for Kc in [0.5, 1, 2]:
plt.plot (ts, response (Kc, 10
axhline (ysp, label='Sy_{sp}$

legend ()

label="S$K_c=/{
plt.
plt.

<matplotlib.legend.Legend at 0x1cl7a02e80>

(continued from previous page)

: def response (Kc, tau_i):
Gp = blocksim.LTI('G', 'u', 'y', [K], [tau, 1], theta)
Gc = blocksim.PI('Ge', 'e', 'u', Kc, tau_i)
blocks = [Gp, Gc]
inputs = {'ysp': lambda t: ysp}
sums = {'e': ('+ysp', '-y')}
diagram = blocksim.Diagram(blocks, sums, inputs)

S, format (Kc))

—_— =05
15 A1

10 4

g |

These are the error measures in the book (eq 11-35 to 11-37).
parameters= (1, 2) isequivalentto f (1, 2).

: def iae(parameters):
return scipy.integrate.trapz (numpy.abs (response (*parameters)

5

Note that the syntax f (*parameters) with

- ysp), ts)

3.3. PID controller design, tuning and troubleshooting

191

[117:

[12]:

Dynamics and Control, Release 0.0.1

: def ise(parameters):
return scipy.integrate.trapz ((response (*parameters)

: def itae (parameters):

return scipy.integrate.trapz (numpy.abs (response (*parameters)

errfuns = [iae, 1ise, itae]

Now we can find the optimal parameters for the various error measures.

$%time
optimal_parameters = {}
for error in errfuns:
name = error.__name__ .upper ()
optimal_parameters[name] = scipy.optimize.minimize (error, [1,

print (name, *optimal_parameters|[name])

plt.plot (ts, response (*optimal_parameters[name]), label=name)

plt.axhline (1, label='setpoint')
plt.legend(loc="best"')

IAE 0.6639499654277579 16.700104675285132
ISE 0.8519796593454986 25.498163370798167
ITAE 0.5856442797588636 16.69999502290863

CPU times: user 1min 26s, sys: 3 s, total: 1min 29s
Wall time: 1min 35s
12 1
10 —_—
0.5 1
0.6 1
0.4 -
— |AE
0.2 - ISE
—— |TAE
0.0 - — setpoint

30

5

- ysp) **2,

ts)

101)

- ysp) *ts, ts)

. X

We could also have used table 11.3, which is automated by a function in tbcontrol (see the ITAE parameters for
FOPDT system notebook for more information on this function)

from tbcontrol.fopdtitae import parameters

Kc, tau_i = parameters (K, tau, theta, "Set point",

print (Kc, tau_i)

0.6035259299979403 16.370626907724816

"PI")

These values correspond approximately with those found through direct minimisation.

192

Chapter 3. Control

Dynamics and Control, Release 0.0.1

label="'Table 11.3")

[16]: plt.plot (ts, response(Kc, tau_i),
plt.plot (ts, response (*optimal_parameters['ITAE']), label='Minimisation')
plt.legend()

[16 <matplotlib.legend.Legend at 0x1cl1952bel0>

10 - —
0.5 1 i
|
|
|
06 |
|
|
|
0.4 - |
|
0.2 - J
—— Table 11.3
0.0 - | Minimisation
0 5 10 15 20 25 30 15

[17]: itae ([Kc, tau_il])

[17]: 4.025429557262326

[18]: itae (optimal_parameters['ITAE'])

[18]: 3.644873223762508

Note that the error we obtained via direct minimisation was lower than the one obtained via the table, as they have fitted

a curve through the results.

3.3.3 ITAE parameters for FOPDT system

This notebook is a convenient interface to the tbcontrol. fopdtitae module, which calculates the values of the
PI/PID controller settings based on Table 11.3 of Seborg, Edgar, Melichamp and Lewin (itself based on Smith and

Corripio, 1997).

from tbcontrol import fopdtitae

[N

We can get the parameters using the function fopdtitae.parameters: The default is disturbance parameters on a

PI controller.

[2]: fopdtitae.parameters (K=1, tau=1, theta=1)

[2]: [0.859, 1.4836795252225519]

193

3.3. PID controller design, tuning and troubleshooting

Dynamics and Control, Release 0.0.1

3.3.4 Interactive version

We'll build an interactive version by printing the parameters with their names and allowing for easy entry.

from ipywidgets import interact, FloatText
names = 'K¢', 'TI', 'TD'

This is the function which does the calculations. You can check the values in Example 11.5:

: def tablefunction (K, tau, theta=1.07, type_of_input='Disturbance', type_of_controller=

—'PT"):
parameters = fopdtitae.parameters (K, tau, theta, type_of_input, type_of_
—controller)
for name, value in zip(names, parameters):
print (name, "=", wvalue)

tablefunction(1.54, 5.93, 1.07, 'Disturbance', 'PI')

Kc
Tl

2.9719324064107253
2.745987615154182

interact (tablefunction,

K=FloatText (value=1.54), tau=FloatText (value=5.93), theta=FloatText (value=1.
-07),

type_of_input=['Disturbance', 'Set point'], type_of_controller=['PI', 'PID

—="1);

interactive (children=(FloatText (value=1.54, description='K'), FloatText (value=5.93, .
—description='tau'), FloatT..

3.4 Frequency domain analysis of control systems

3.4.1 Stability in the frequency domain
The frequency domain allows us to find the stability of closed loop systems using only open loop transfer functions and
simple operations.

This material is also covered in this video. The GeoGebra sheet is available here.

import numpy
from matplotlib import pyplot as plt
$matplotlib inline

194 Chapter 3. Control

https://youtu.be/3eYU8qIkp64
https://ggbm.at/cV8QmwXZ

Dynamics and Control, Release 0.0.1

Locating poles and zeros of a complex function

Let’s construct a complex transfer function by specifying the poles, zeros and gain separately.

zeros = [1]
poles =i + g, =1 = dg1I
gain = 1

from numpy.polynomial.polynomial import polyvalfromroots

def G(s):
return gain*polyvalfromroots (s, zeros)/polyvalfromroots (s, poles)

It will be useful for us to be able to plot a complex curve easily

def plotcomplex (curve, color='blue', marker=None) :
plt.plot (numpy.real (curve), numpy.imag(curve), color=color, marker=marker)

def plotpz () :
for p in poles:
plotcomplex (p, color='red', marker='x")
for z in zeros:
plotcomplex (z, color='red', marker='o'")

This function will change the axes to be a cross through the origin and have an equal aspect ratio (so that a circle appears
as a circle)

from tbcontrol.plotting import cross_axis

Let’s construct a circular contour and see how the image of the contour moves around as the contour moves around. The
image is G(s) as s goes through a countour

from ipywidgets import interact

def plotsituation (contour) :
plotcomplex (contour)
plotcomplex (G (contour), color='red')
plotpz ()
cross_axis ()

theta = numpy.linspace (0, 2*numpy.pi, 1000)

, centerimag=(-2., 2.), radius=(0.5, 3)):

def argumentprinciple (centerreal=(-2., 2.)
) + centerreal + lj*centerimag

contour = radius*numpy.exp(lj*theta
plotsituation (contour)

interact (argumentprinciple)

You should be able to verify the Cauchy argument principle using the interaction above:

As s describes a simple contour enclosing N,, poles and NN, zeros, the image G(s) encircles the origin w = N, — N,
times. w is the winding number.

3.4. Frequency domain analysis of control systems 195

https://en.wikipedia.org/wiki/Winding_number

Dynamics and Control, Release 0.0.1

Closed loop stability

Normally we will be looking at transfer functions of the form

GK
1+GK

So we will want to check if the denominator of the above (1 + GK) has roots in the RHP. To do this we can construct a
special contour called the Nyquist D contour which encloses the whole of the RHP. It starts at the origin, then goes up to
infinity, circles around at infinite distance from the origin in a clockwise direction, and then comes back up the imaginary
axis. For most functions, the part at infinity just maps 1 + GK to 1 as GK goes to zero as s goes to infinity.

: omega = numpy.logspace (-2, 2, 1000)

Dcontour = numpy.concatenate([lj*omega, —-1j*omegal::-1]]) # We're ignoring the.
—infinite arc

Let’s assume that K = 1 and check if our system will be closed loop stable

: K =1

: plotcomplex (K*G (Dcontour) + 1)

: def nyquistplot

cross_axis (size=2)

Counting encirclements of the origin of 1 + G K is the same as counting encirclements of —1 by GK:

(K) :
plotcomplex (K*G (Dcontour))
plotcomplex (-1, color='red', marker='o')
cross_axis (size=2)

: nyquistplot (K=1)

This enables us to reason easily about the effect of the controller gain on stability:

: interact (nyquistplot, K=(0.5, 5.))

Nyquist stability criterion

Let Np be the number of poles of KG(s) encircled by the D contour and Nz be the number of zeros of 1 + KG(s)
encircled by the D contour. Nz is the number of poles of the closed loop system in the right half plane. The resultant
image shall encircle (clock-wise) the point (—1 4 j0) w times such that w = Nz — Np.

For a stable G this boils down to spotting when the Nyquist plot encircles the -1 point.
Bode stability criterion
Nyquist plots are hard to draw by hand, though, so we often use the Bode stability criterion instead. This works by noticing

that, in order for the Nyquist graph to encircle the -1 point, the phase angle must reach -180 ° and the magnitude must be
bigger than 1. We can draw a Bode diagram and a Nyquist diagram next to each other to see the effect of changing gains.

: def bodeplot (K) :

fig = plt.figure(figsize=(10,5))

ax_gain = plt.subplot2grid((2, 2), (0, 0))
(continues on next page)

196 Chapter 3. Control

Dynamics and Control, Release 0.0.1

(continued from previous page)

ax_phase = plt.subplot2grid((2, 2), (1, 0))
ax_complex = plt.subplot2grid((2, 2), (0, 1), rowspan=2)

fregresp = K*G(1lj*omega)

ax_gain.loglog (omega, numpy.abs (fregresp))

ax_gain.axhline (1, color='orange')

ax_gain.set_ylim([0.1, 10])

ax_gain.set_ylabel (' |G| ")

ax_phase.semilogx (omega, numpy.unwrap (numpy.angle (freqresp)) - numpy.
—angle (freqresp([0])) # We know the angle should start at 0

ax_phase.axhline (-numpy.pi, color='green')

ax_phase.set_ylabel ('«G / rad')

ax_phase.set_xlabel ('w / (rad/s)')

plt.sca(ax_complex)
nyquistplot (K)

circle = numpy.exp (-1j*numpy.linspace (0, numpy.pi*2))
ax_complex.plot (circle.real, circle.imag, color='orange')
ax_complex.plot ([-2, 0], [0, 0], color='green', linewidth=4, alpha=1,

interact (bodeplot, K=(0.5, 5.))

3.5 Advanced control methods

import matplotlib.pyplot as plt
smatplotlib inline

import numpy

from tbcontrol import blocksim

3.5.1 Dead time reduces control performance

Let’s first build a standard control loop with a disturbance.

D

Gq

zorder=-1)

3.5. Advanced control methods

197

Dynamics and Control, Release 0.0.1

We'll use the system and simulate the control performance with and without deadtime. K,,, = G. = G,, = 1 and

6—95

Gp=Ca= (5s+ 1)(3s + 1)

[4]: inputs = {'y‘sp': blocksim.step(),
p
'd': blocksim. step (starttimefllO) }

[5]: sums

{'y's ("+yu', '+yd'),
‘e's ("tysp', '-v'),
i

For the dead time free system, we can use a high gain PI controller

[6]: def Gp(name, input, output, theta):
return blocksim.LTTI (name, input, output,
1, numpy.convolve([5, 1], [3, 1]1), delay=theta)

[7]1: Gpl = Gp('Gp', 'p', 'yu', 0)

[8]: Gcl = blocksim.PI('Ge', 'e', 'p',
3.02, 6.5)

For the system with dead time we need to detune the controller

[9]: Gp2 = Gp('Gp', 'pP', 'yu', 2)

[10]: Gc2 = blocksim.PI('Ge', 'e', 'p',
1.23, 7)

[11]: Gd = Gp('Gd', 'd', 'yd', 2)

[12]: diagrams = {'No dead time': blocksim.Diagram([Gpl, Gcl, Gd], sums, inputs),
'Dead time': blocksim.Diagram([Gp2, Gcl, Gd], sums, inputs),
'Dead time detuned': blocksim.Diagram([Gp2, Gc2, Gd], sums, inputs)
I3

[13]: ts = numpy.linspace (0, 80, 2000)
[14]: outputs = {}

[15]: for description, diagram in diagrams.items () :

lastoutput = outputs|[description] = diagram.simulate (ts)
plt.plot (ts, lastoutput['y'], label=description)
plt.legend()

[15]: <matplotlib.legend.Legend at 0xlclf7adell>

198 Chapter 3. Control

Dynamics and Control, Release 0.0.1

200 1

175 A

150 -

125 A

100 A

075 1

050

- No dead time
Dead time
0.00 —— Dead time detuned

025

o 10 20 30 40 50 &0 i) 80

3.5.2 Smith Predictor

The Smith predictor or dead time compensator uses a dead time free model to do most of the control (é*} and then
subtracts the delayed prediction from the measurement to react only on the unhandled dynamics.

LGd

_ Y ~ Y
L= G* : e 08 ﬁ-{z j%r)

Y-Y,

:sums = {'y': ('+yd', '+yu'),

'y-ytilde2': ('-ytilde2', '+y'),
'e': ('+ysp', '-y-ytilde2'),
'eprime': ('+e', '-ytildel'),

}

We'll use the dead time containing model from before

: G = Gp2

G.name = 'G'

But the controller which was tuned on the dead time free model

3.5. Advanced control methods 199

[20] :

[21]:

[22]:

[22] :

[24]:

Dynamics and Control, Release 0.0.1

Gc = Gcl
Gc.inputname = 'eprime'

Gtildestar = blocksim.LTI('Gtildestar', 'p', 'ytildel',
1, numpy.convolve ([5, 11, [3, 11))

delay = blocksim.Deadtime ('Delay', 'ytildel', 'ytilde2',6 2)

blocks = [Gc, G, Gd, Gtildestar, delay]

diagram = blocksim.Diagram(blocks, sums, inputs)
diagram

PI: eprime ~»[Gc]-»> p

LTI: p »[G]~ yu

LTI: d »[Gd]-» yd

LTI: p »[Gtildestar]- ytildel
Deadtime: ytildel -[Delay]- ytilde2

outputs['Smith compensator'] = diagram.simulate (ts)

for description in ['No dead time', 'Smith compensator', 'Dead time detuned']:

plt.plot (ts, outputs|[description]['y'], label=description)
plt.legend()

<matplotlib.legend.Legend at 0x1cl£f8d2358>

144

124

104

05 4

06 4

04

— No dead time
Smith compensator
0.0 - = [ead time detuned

02

0 10 20 30 40 50 G0 70 80

We see that the Smith Predictor gives us almost the same performance as the dead time free system, but that it cannot
entirely compensate for the delay in the disturbance output because it doesn’t have an undelayed measurement of it. It
still does better on the disturbance rejection than the detuned PI controller we had to settle for with the dead time.

200

Chapter 3. Control

[7]:

Dynamics and Control, Release 0.0.1

3.6 Discrete control and analysis

: import numpy

import matplotlib.pyplot as plt

$matplotlib inline

: import tbcontrol

tbcontrol.expectversion('0.1.3")

3.6.1 Numeric simulation

Let’s start with a very simple numeric simulation of a proportional controller acting on a first order process G = £ =

K
Ts+1°
K =3
tau = 2
Kc = 2
: ts = numpy.linspace (0,
dt = ts[1]

: y_continuous = []

Il
—

u_continuous

y =0

sp =1

for t in ts:
e = sp -y
u = Kc*e

5, 1000)

dydt = 1/tau* (K*u - y)

y += dydt*dt

u_continuous.append (u)
y_continuous.append (y)

def plot_continuous() :

plt.subplots (2,

1,

.plot (ts, u_continuous)

.plot (ts, y_continuous)

fig, [ax_u, ax_y]

ax_u

ax_u.set_ylabel ('Su(t)s$")
ax_y

ax_y.axhline (1)
ax_y.set_ylabel ('Sy(t)sS")

sharex=True)

3.1
(3.2)

(3.3)

34

(continues on next page)

3.6. Discrete control and analysis

201

[81:

[8]:

Dynamics and Control, Release 0.0.1

ax_y.set_ylabel ('time'")

return ax_u, ax_y

plot_continuous ()

(continued from previous page)

(<matplotlib.axes._subplots.AxesSubplot at 0x11dfc79e8>,
<matplotlib.axes._subplots.AxesSubplot at 0x11e022240>)

20

15 4

uit)

10 4

05 A

10

05

time

00 4

=
=
Pt

Now, let’s use a discrete version of the same controller. We will assume a Zero Order Hold between the controller and

the system.

The discrete controller will only run at the sampling points. Now, we have an integration timestep and a discrete timestep.
We call the integration timestep dt and the sampling time A¢. We may think that if we use the above for loop to update
t, it will eventually be equal to At, but this is not true in general. Instead, we set a target for the sampling time and check
if we are at a time greater than that time, then set a new time one sampling time in the future.

DeltaT = 0.5 # sampling time

: u_discrete = []
y_discrete = []
y =0
sp =1
next_sample = 0

for t in ts:
if t >= next_sample:
e = Sp — Yy
u = Kc*e
next_sample += DeltaT
dydt = 1/tau* (K*u - y)
y += dydt*dt

u_discrete.append(u)
y_discrete.append (y)

ax_u, ax_y = plot_continuous ()
ax_u.plot (ts, u_discrete)
ax_y.plot(ts, y_discrete)

202

Chapter 3. Control

Dynamics and Control, Release 0.0.1

[11]: [<matplotlib.lines.Line2D at 0x11e1877£f0>]

uit)

10

time

05 4

00

Notice the difference? Because the discrete controller only calculates its values at the sampling points and because the
ZOH keeps its output constant, the discrete controller takes more action later on, in fact introducing some oscillation
where the continuous controller could use arbitrarily large gain.

3.6.2 Symbolic calculation

Now we will try to replicate that last figure without doing numeric simulation. The continuous controller is trivially done
via the Laplace transform:

[12]: import sympy
sympy.init_printing()

[13]: s = sympy.Symbol('s")
t = sympy.Symbol ('t', positive=True)

Gc = Kc # controller
G = K/ (tau*s + 1) # system

G_cl = Gc*G/ (1 + Gc*G)
rs = 1/s # step input r(s)

ys = rs*G_cl # system output y(s)

es = rs - ys # error

us = Gc*es # controller output

yt = sympy.inverse_laplace_transform(ys, s, t)
ut = sympy.inverse_laplace_transform(us, s, t)

[14]: sympy.plot (ut, (t, 0, 5))
sympy.plot (yt, (t, 0, 5))

3.6. Discrete control and analysis 203

[14]:

[15]:

[16]:

[17]:

[17]:

Dynamics and Control, Release 0.0.1

fit)

200 1

175 A

150 1

125 1

100 ¥ 1 2 3 4 5

075 1

050 1

25 -

i}

0a

&

04 4

02 4

00 T

<sympy.plotting.plot.Plot at 0x11£f90c4a8>

Now for the discrete controller. First we need some new symbols.

z, g = sympy.symbols('z, g')

We get the z transform of a sampled step from the table in the datasheet.
rz = 1/(1 - z**-1)

If we rewrite a z-transformed signal as a polynomial r(z) = ag + a2~ ! +az2272. .., the coefficients give the values at

the sampling points, so ag = 7(0), a1 = r(At), az = r(2At) and so on. We can obtain these coefficients easily using a
Taylor expansion in sympy.

rz.subs(z, g**-1).series()

l+g++¢+q* +¢°+0(¢°)

We can see clearly that all the coefficients are 1 for the step.

There is more detail in this notebook if you want to refresh your memory

204 Chapter 3. Control

Dynamics and Control, Release 0.0.1

The tbcontrol.symbolic.sampledvalues function automates this process:

[18]: from tbcontrol.symbolic import sampledvalues
[19]: def plotdiscrete(fz, N):
values = sampledvalues(fz, z, N)

times = [n*DeltaT for n in range (N)]
plt.stem(times, values)

[20]: plotdiscrete(rz, 10)

104 # ’ » ™ ™ ™ ™ ™ ™ ™

0.8 4

0.6

0.4

0.2 A

0.0 4

Let’s move on to the other transfer functions. The controller is simple:
[21]: Gcz = Kc
The controller is connected to a hold element (H) which is connected to the system itself (). The z-transform of this
combination can be written Z{H (s)G(s)}. Remember, H(s) = 1(1 — e~4!*). Now we can show
:nbsphinx-math: begin{align} mathcal{Z }left{ { H(s)G(s) }right} &=
mathcal{Z}left{frac{1}{s}(1 - e{-Ts})G(s)right} \

&= mathcal{Z}left{underbrace{frac{G(s)}{s}}_{F(s)}(1 - e*{-Ts})right} \
&= mathcal{Z}left{F(s) - F(s)e"{-Ts}right} \
&= mathcal{Z}left{F(s)right} - mathcal{Z}left{F(s)e*{-Ts}right} \ &= F(z) - F(z)z"{-1} \ &= F(z)(1 -
zM-1})
end{align}" So the z transform we’re looking for will be F'(z)(1 — 2~1) with F'(z) being the transform on the right of
the table of 1G(s).

—b)z~ !
For G(S) = %H, F(S) = S(TI{—FD’ F(Z) = %

3.6. Discrete control and analysis 205

[22]:

[23]:

[23]:

Dynamics and Control, Release 0.0.1

Time domain Laplace-transform z-transform (b = e °7)
Impulse: §(t) 1 1
_ 1 1
Unit step: u(t) - -1
L 1 T=-!
Ramp: ¢ — —_—
52 (1= 2-1)%
I n! , . 0" 1
t g+l .].l_l.ltl]{_l} da® 1 = hz-1
:2::::; 1 1
—af =1 E—
! s4a 1 =bz?
bzt
oot e L .
(s + a)? (1 = b1y
. : hz-1(1 4 bzt
r_l‘ —af #_ L =5 {] l_{ }
(s +a)? (1 = bz=1Yy
A A W 2"V sin(wT)
sin(wt - :
in(wt) s 4 w? 1 - 2271 cos(wT) + 272
g 1 =z teos(wT)
wet) DA —
cos(wt) 52 4 2 1 = 2:-1cos(wT) 4 2-2
- k a (1-b):zt
- R
s(s4+a) (1=2z"1(1=0bz"Y)

a = 1/tau

b = sympy.exp(-a*DeltaT)

Tz = K¥ (1l =) *g==*=1l/((1l = g=¥=i)= (il = lb¥g=~=0))
HGz = Fz — z**-1*Fz

Let’s verify that this is correct by plotting the continuous response along with the discrete values:

plotdiscrete (rz*HGz, 10)
plt.plot(ts, K* (1 - numpy.exp (-ts/tau)))

[<matplotlib.lines.Line2D at 0x11df60c88>]

206 Chapter 3. Control

Dynamics and Control, Release 0.0.1

25

204

154

10 4

05 4

0.0 4

Now we have the discrete transfer functions, we can repeat the same calculation as before.

: yz = rz*Gecz*HGz/ (1 + Gcz*HGz)

: plt.plot(ts, y_discrete)

plotdiscrete(yz, 10)
plt.legend (['Numeric simulation', 'Analytical at sampling points'])

<matplotlib.legend.Legend at Oxl1l1fefd9%e8>

= Mumeric simulaticn
12 4 —&_ Analytical at sampling points

So now we have recovered the response we calculated numerically before analytically. Let’s see if we can reproduce the
numeric values between the sampling points for the continuous system output. Our first step is to construct the Laplace

transform of the controller output. Let’s look again what that looked like:

ez = rz — yz

uz = Gcz*ez
plotdiscrete (uz, 10)
plt.plot (ts, u_discrete)

[<matplotlib.lines.Line2D at 0x11f£f33f28>]

3.6. Discrete control and analysis

207

[29]:

Dynamics and Control, Release 0.0.1

201 $—
154
104
0.5 i I___1
0.0 4 | | T
—0.5
‘_
T T T T T T
0 1 2 3 4 5

We can interpret this as shifted pulse signals added together.
If we were trying to calculate the response of the system to a single pulse input, it would be simple.
Since

y(s) = G(s)u(s) (3.5)
y(t) = L7HG(s)u(s)} (3.6)

and a pulse signal of width At and height v has Laplace transform (1 - e’Ats) = vH(s), the single output would be
easy to obtain:

: Hs = 1/s*(1 - sympy.exp(-DeltaT*s))

: u_single_pulse = 2*Hs

y_single_pulse = sympy.inverse_laplace_transform(G*u_single_pulse, s, t)

sympy.plot (y_single_pulse, (t, 0, 5))

i}

124

10 4

0a 4

0 1

04 4

02 4

00

208 Chapter 3. Control

Dynamics and Control, Release 0.0.1

<sympy.plotting.plot.Plot at 0x1201e82b0>

[29]:
For subsequent pulses, we simply shift the pulse one time step up. So, given
o0
u(z) =ap+arz " tagz 4= Z a;z~"
i=0

If the output of the controller is zero-order held so that the held version of the signal is wuj,, we can write
o0
= Z a;H(s)e 1At
i=0

up(s) = agH(s) + a1 H(s)e 2 + agH(s)e 22

10)))

This maps quite elegantly to the following generator expression:
Zy

sum(ai*Hs*sympy.exp (—-i*DeltaT*s)
ali in enumerate (sampledvalues (uz,

[30]: uhs =
for i,

Equivalently, we can write

[31]: uhs = 0
a = sampledvalues (uz, z, 10)

for i in range(10):
uhs += a[i] *Hs*sympy.exp (-1*DeltaT*s)

Now we can construct the continuous response like this:

[32]: ys = uhs*G
[33]: yt = sympy.inverse_laplace_transform(ys, s, t)
[34]: plt.plot(ts, y_discrete)

plt.plot (ts, tbcontrol.symbolic.evaluate_at_times(yt, t, ts), '--")
[34]: [<matplotlib.lines.Line2D at 0x11f9eel60>]

A

| '\

12 ;2
[\
10 A |4
||I l'-I “-"- b s
| \ T, - R
0.8 - { \ \&f

| LI
| 'I; Fa

061 L
|
|

0.4 1 |
I
§

D2 1 |I
|
|

no{ !
2 3 4 5

0
Notice that the analytical solution and numeric solution agree, but make sure you understand what the difference is in

209

approach.

3.6. Discrete control and analysis

[5]:

Dynamics and Control, Release 0.0.1

3.6.3 Discrete Pl with ITAE parameters

This notebook reproduces Figure 17.10 in Seborg et al and also goes a little further

from tbcontrol import blocksim, fopdtitae

import numpy
import matplotlib.pyplot as plt
%matplotlib inline

def limit (u, umin, umax) :

return max (umin, min (u, umax))

class DiscretePI (blocksim.Block) :
def _ init_ (self, inputname,
— umax=numpy.inf) :
super () .__init__ (name,

name, outputname,

inputname, outputname)
self.K = K

self.tau_I = tau_I

self.deltat = deltat

self.umin = umin

self.umax = umax

self.reset ()

def reset (self):
self.state = 0
self.output = 0
self.eint = 0
self.nextsample = 0O

def change_input (self, t, e):
if t >= self.nextsample:
self.eint += e*self.deltat
self.output =
self.nextsample += self.deltat
return limit (self.output, self.umin,

def change_state(self, x):
self.state = x

def derivative (self, e):
return 0

class DiscretePI_vel (DiscretePI):
def reset (self):
self.state = 0
self.output = 0
self.e_k_1 =0
self.nextsample = 0O

def change_input (self, t, e_k):
if t >= self.nextsample:

self.output += self.K*((e_k - self.e_k_1)
self.umin,

self.output = limit (self.output,

K, tau_I,

self.umax)

deltat,

self.K* (e + self.eint/self.tau_I)

self.umax)

umin=-numpy.inf,

+ self.deltat/self.tau_I*e_k)

(continues on next page)

210

Chapter 3. Control

Dynamics and Control, Release 0.0.1

(continued from previous page)

self.e_k_1 = e_k
self.nextsample += self.deltat

return self.output

The system is

—20e™* Kpe '

G = G,GpGy = =
TPET T B+ 1 Tps +1

It is not explicitly stated in the example, but G4 = G is assumed.

[6]: Kp = -20
taup = 5
theta = 1

[7]: G = blocksim.LTI('G', 'u', 'yu',
Kp, [taup, 1], theta)

[8]: Gd = blocksim.LTI('G', 'd', 'yd',
Kp, [taup, 1], theta)

Note we can’t justdo G = Gd because we need new names and a new state for the block.

[9]: sums = {'y': ('+yu', '+yd'),
Vel: ('7y', V+r7)}

[28]: inputs = {'r': blocksim.zero,
'd': blocksim.step ()}

[11]: ts = numpy.linspace (0, 15, 2000)

[12]: deltats = [0.05, 0.25, 0.5, 1]

Reconstruction

Here is the direct reconstruction of Figure 11.10. Turns out they use a continuous PI controller with the parameters for
a discrete controller.

[13]: def simulate (controller, discrete=True, umin=-numpy.inf, umax=numpy.inf) :
fig, (uaxis, yaxis) = plt.subplots(2, 1, figsize=(5, 10))
for deltat in deltats:
Kc, tau_I = fopdtitae.parameters (Kp, taup, theta + deltat/2)

Gc = controller('Ge', 'e', u',

Kc, tau_I,

*((deltat, umin, umax) if discrete else ()))
diagram = blocksim.Diagram([G, Gd, Gc], sums, inputs)
outputs = diagram.simulate (ts)
uaxis.plot (ts, outputs['u'l])
yvaxis.plot (ts, outputs['y'], label='At= '.format (deltat))

uaxis.set_ylabel ('u')
yaxis.set_ylabel ('y")
(continues on next page)

3.6. Discrete control and analysis 211

Dynamics and Control, Release 0.0.1

(continued from previous page)

yvaxis.plot (ts, outputs['r'], label='r"')
vaxis.legend()

[14]: simulate (blocksim.PI, discrete=False)

00 A

0.2 4

—0.4

0.6 4

= —0.8 4

=-1.0 4

-1.2 4

-1.4 4

-1.6 4

Discrete responses

[15]: simulate (DiscretePI)

212 Chapter 3. Control

Dynamics and Control, Release 0.0.1

000 4

—0.25

—0.50 4

—0.75

—1.00 1

-1.25

-1.50

[16]: simulate (DiscretePI_vel)

3.6. Discrete control and analysis 213

Dynamics and Control, Release 0.0.1

.00 4

—0.25

—0.50 4

—0.75

—1.00 1

-1.25

-1.50

0 2 4 & 8 10

14

©

This looks different from the given figure, but the position form and velocity form look identical. Note that the analog PI
controller gets better results than the digital approximations with the same controller parameters. “Better” in this context
means that in general the error is smaller (note the worst case error in the analog case is about 5, while in the digital case
it’s almost 7.

With output limits

Now, let’s include limiting behaviour

simulate (DiscretePI, umin=-1.2, umax=0)

214 Chapter 3. Control

[207] :

Dynamics and Control, Release 0.0.1

00

0.2 4

—0.4 4

-1.2 A

— Ar=0.05
ar=0.25
— at=0.5

simulate (DiscretePI_vel, umin=-1.2,

umax=0)

3.6. Discrete control and analysis

215

: inputs['

Dynamics and Control, Release 0.0.1

00

0.2 4

—0.4

=1.0 4

-1.2 A

=7 T T T T T T
o 2 4 & 8 10

14

o ||

The windup on the position form PID is very clear. In the “wound up” case, the output is stuck at the limit for a long time
as the controller has to unwind the integral before moving away from the limit. In the velocity form, the output comes
away from the limit much faster.

With setpoint tracking

Let’s include setpoint tracking as well.

r'] blocksim.step(starttime=0)
inputs['d'] = blocksim.step(starttime=15)

: ts = numpy.linspace (0, 30, 2000)

simulate (DiscretePI)

216 Chapter 3. Control

Dynamics and Control, Release 0.0.1

.00 4

—0.25

—0.50 4

—0.75

=1.00 1

-1.25

-1.50

-1.75

3.6.4 Dahlin controller

We will replicate the controller output in figure 17.11a. This notebook has a video commentary.

Note I am replicating these results using analytic methods to show that the artefacts are not numerical but rather funda-
mental to the calculations. If you simply want to simulate the action of a discrete controller on a continuous system, have

a look at the Simple discrete controller simulation notebook.

: import sympy

sympy.init_printing ()
import tbcontrol
tbcontrol.expectversion('0.1.3")

3.6. Discrete control and analysis

217

https://youtu.be/7c-f-6pMgt4

Dynamics and Control, Release 0.0.1

3.6.5 Discretise the system

We need to find the corresponding z transform of the hold element and the system. Since H = 1/s(1 — e~

find F' = G/s, from there f(¢) and then work out the z transform

s, t = sympy.symbols('s, t')
Gs = 1/(15*%s**2 + 8*s + 1)
Gs
1
1552 +8s+1
: f = sympy.inverse_laplace_transform(Gs/s, s, t).simplify()

sympy.nsimplify (sympy.N(f)) .simplify ()

Ts), we can

We can see that f(¢) is the sum of 1 and two exponentials. It is easy to determine the corresponding z transforms from

the table

Time domain Laplace-transform z-transform (b = e=97)

| Fz

plt.stem(times, values)

—at 1 1
e s+a 1—bz—1
: z, g = sympy.symbols('z, g')
Now the sampling interval
: T =1 # Sampling interval
: def expz(a):
b = sympy.exp(-a*T)
return 1/ (1 - b*z**-1)
: Fz = -5/2*%expz (1/5) + 3/2*expz (1/3) + 1/(1 — z**-1)
1.5 2.5
1— 0.716531310573789 1— 0.818730753077982 1
z z z
Let’s see if we did that right
: import tbcontrol.symbolic
: def plotdiscrete(fz, N):
values = tbcontrol.symbolic.sampledvalues (fz, z, N)
times = [n*T for n in range (N)]

218

Chapter 3. Control

[16]:

[18]:

[18]:

Dynamics and Control, Release 0.0.1

: import matplotlib.pyplot as plt

%matplotlib inline

: import numpy

: ts = numpy.linspace (0, 10, 300)

: plotdiscrete(Fz, 10)

plt.plot (ts, tbcontrol.symbolic.evaluate_at_times(f, t, ts))

[<matplotlib.lines.Line2D at 0x1205b3ef0>]

07 A

0.6 4

05

04

03

02 A

01~

004 w

Here is the transform of the system and the hold element. See the Discrete control notebook for the derivation.

: HG_z = Fz* (1 - z**-1)

3.6.6 Dahlin Controller

The desired closed loop response is first order

: 8 =0 # system dead time

A =1 # Dahlin's lambda
h = 0 # Dahlin's h

First order response in eq 17-63

N = 6/T

A = sympy.exp (-T/A)

yclz = (1 — A)*z**(-N-1)/(1 — A*z**-1)
: K = (1/HG_z*yclz/ (1 — yclz)) .simplify ()

K

1.0 (0.6321205588285582% — 0.970470713623842z + 0.370831136111342)
0.027970083165729222 — 0.00455601047319787z — 0.0234140726925314

3.6. Discrete control and analysis

219

[24]:

[25]:

[25]:

Dynamics and Control, Release 0.0.1

#K = 0.632/(1 — z*-1) * (1 - 1.5353%*z**-1 + 0.5866*z**-2)/(0.028 + 0.0234*z**-1)

We will model the control response to a unit step in reference signal

:rz = 1/(1 - z**-1) # unit step in z

Now we can calculate the z-domain version of the controller output

:uz = K/ (1 + K*HG_z) *rz

: N =10

: plotdiscrete (uz, N)

20 1

=10 A

=70

This oscillating controller output is known as “ringing”. It is an undesirable effect.

3.6.7 Continuous response

By design the controlled variable follows an exponential at the sampling points.

yz = K*HG_z/ (1 + K*HG_z) *rz

plotdiscrete (yz, N)
plt.plot(ts, 1 - numpy.exp(-ts/A))

[<matplotlib.lines.Line2D at 0x120c51390>]

220

Chapter 3. Control

[27]:

[287]:

cu

Dynamics and Control, Release 0.0.1

10 A . d : d ¥

0.8 4

0.6

0.4

0.2 A

0.0 4

But what does it really look like between data points? First, let’s construct the response of the system to a single sampling

time length pulse input

:p = f - f.subs(t, t-T)

Note that there is a slight issue with finding the value of this function at zero, so we avoid that point in plotting by starting

at some small value which is not zero.

smallvalue = 0.001
sympy.plot (p, (t, smallvalue, 10))
=

(.08 1

006 -

004 1

002 1

-+

<sympy.plotting.plot.Plot at 0x1209627f0>

Let’s get the values of the controller output as a list:

tbcontrol.symbolic.sampledvalues (uz, z, N)

Now, we calculate the output of the system as the sum of the various pulse inputs.

3.6. Discrete control and analysis

221

Dynamics and Control, Release 0.0.1

[30]: yt = numpy.zeros_like(ts)
for i in range (0, N):
vyt += [float (sympy.N(u[i]*p.subs(t, ti-i + smallvalue))) for ti in ts]

Finally, we present the discrete system response, the designed response and the analytical continuous response on the
same graph.

[31]: plotdiscrete(yz, 10)
plt.plot(ts, 1 - numpy.exp(-ts/A))
plt.plot (ts, yt)

[31]: [<matplotlib.lines.Line2D at 0x12126£8d0>]

10 4
/)
05 4
0.6 4

04

02

0.0 4

3.6.8 Simple discrete simulation: Dahlin controller

This notebook replicates Figure 17.11 in Seborg et al without using analytic methods. If you want to get some insight into
the math behind the z transform, applied to the same problem see the Dahlin controller notebook.

[1]: import tbcontrol
[2]: tbcontrol.expectversion('0.2.1")
[3]: from tbcontrol import blocksim

[4]: import matplotlib.pyplot as plt
smatplotlib inline

[5]: import numpy
import control

222 Chapter 3. Control

[13]:

[14]:

[16]:

[17]:

Dynamics and Control, Release 0.0.1

Simple discretisation

The control module supplies an easy access point to a transfer function which represents s.

: s = control.TransferFunction.s
K=1
Tl =5
T2 = 3
6 =0
At = 1
: assert 6 $ At == # this is only correct when the delay is a multiple of the.

—sampling time
N = int (6/At)

: G = K/ ((tl*s + 1)*(t2*s + 1))

Discretize G assuming a zero order hold in front of it, this corresponds to using Table 17.1

: z = control.TransferFunction.z

: Gz = G.sample (At) *z** (-N)

Gz
0.02797z + 0.02341 d— 1
22 — 1.5352 + 0.5866 N
Do discrete transfer function math
Dahlin controller relationship
A = At # this is a tuning parameters
A = numpy.exp (-At/A)
Gde = 1/Gz * (1 — BA)y*z**(-N — 1) / (1 — A*z**—1 — (1 — A)*z**(-N — 1)) # eq 17.65

After these calculations Gdc is

: Gdc

0.6321z% — 0.970523 + 0.370822

dt =1
0.02797z% — 0.00455623 — 0.0234122

Notice that there are “extra” orders of z above and below the line in that expression - we could simplify it. This is what
.minreal does.

Gdc = Gdc.minreal ()

Gdc

3.6. Discrete control and analysis 223

[17]:

[18]:

[19]:

[22] :

[23]:

[24]:

[25]:

[26]:

[27]:

Dynamics and Control, Release 0.0.1

22.622 — 34.72 + 13.26

dt =1
22 —0.1629z — 0.8371

Much better.

Convert from positive to negative powers of z

We still have a problem, though, since the control library uses positive powers of z rather than negative powers of z.
tbcontrol.conversion contains some methods to help convert such polynomials. Also notice that the . num and
. den properties of the control library’s tf objects are designed for MIMO systems, so they are nested lists corresponding
with the index of the output and the input we want. Since we’re just looking at one input and one output, we need the
first element of the first element ([0] [0]).

import tbcontrol.conversion

Gdc_neg_num, Gdc_neg_den = tbcontrol.conversion.discrete_coeffs_pos_to_neg(Gdc.
—num[0][0], Gdc.den[0][0])

Gdc_neg_num

[22.59988127611586, —-34.69674036625465, 13.258134912008916]

Gdc_neg_den

[1.0, -0.1628886995509321, -0.8371113004490679]

Simple blocksim simulation
blocksim_G = blocksim.LTI('G', 'u', 'yvu', G.num[0][0], G.den[0][0])
blocksim_Gdc = blocksim.DiscreteTF('Gec', 'e', 'u', 1, Gdc_neg_num, Gdc_neg_den)

diagram = blocksim.simple_control_diagram(blocksim_Gdc, blocksim_G, ysp=blocksim.
—step (starttime=5))

ts = numpy.arange (0, 20, 0.01)
result = diagram.simulate (ts)

def plot_outputs (result):
fig, (ax_y, ax_u) = plt.subplots(l, 2, figsize=(15, 5))

ax_y.plot(ts, result['ysp'l)
ax_y.plot (ts, result['y'])
ax_y.set_ylim(0, 2)
ax_y.set_ylabel ('y")

ax_u.plot(ts, result['u'l)
ax_u.set_ylim(-50, 50)
ax_u.set_ylabel ('u')

224 Chapter 3. Control

[28]:

Dynamics and Control, Release 0.0.1

plot_outputs (result)

200

175 |

150

125

= 100

075

0.50 1

025 1 f
f

0.00 T T
: 50 75 100 125 150

3.6.

9 Noise models

import matplotlib.pyplot as plt
tmatplotlib inline

import numpy

signal =

= numpy.random.randn (100)

plt.plot (signal)

[<matplotlib.lines.Line2D at Oxllcbac940>]

import scipy.signal

result = []

: previous = 0

225

3.6. Discrete control and analysis

[11]:

[117]:

[13]:

[18]:

[197:
[197:

Dynamics and Control, Release 0.0.1

alpha = 0.95

for s in signal:
news = previous* (l-alpha) + alpha*s
previous = news
result.append (news)

plt.plot (result)

[<matplotlib.lines.Line2D at Oxlcleb4aa20>]

¢,_
]
&
2]
=]
8

news = 0

result = numpy.cumsum(signal)

plt.plot (result)

[<matplotlib.lines.Line2D at Oxlclecd37b8>]

a_
=
8
8
8
=

226

Chapter 3. Control

Dynamics and Control, Release 0.0.1

3.7 Multivariable control

3.7.1 Multivariable control

You may want to review the Transfer function matrix notebook before you look at this one.

Closed loop transfer functions for multivariable systems

Let’s consider a 2 x 2 system with feedback control as shown below:

Yep1 E U Y
-4 —13- G{-l : —=— Gpll Ill!
— Gp12
Gc Gp
:} —— szl
Y, E U Y
spe . . 2
— Gr.-? - G;JEE >

: import sympy

sympy.init_printing/()

: G_pll, G_pl2, G_p2l, G_p22, G_cl, G_c2 = sympy.symbols('G_pll, G_pl2, G_p2l, G_p22, G_

—cl, G_c2'")

The matrix representation of the system is straigtforwardly handled by sympy . Matrix:

: G_p = sympy.Matrix ([[G_pll, G_pl2],

[G_p21, G_p22]])

The controller is a bit harder. Convince yourself you understand how the oft-diagonal elements of G are zero in the
diagram above.

: G_c = sympy.Matrix ([[G_cl1, 0],

[0, G_c2]])

Now, we can redraw the block diagram using vectors for the signals and matrices for the blocks.

3.7. Multivariable control 227

]: I = sympy.Matrix([[1

Dynamics and Control, Release 0.0.1

C

Let’s derive the closed loop transfer function. There are three equations represented in the above diagram:

E=Y,-Y (3.7)
U=G.E=Gy(Ysy - Y) (3.8)
Y = GU = GpGo(Yep —Y) (3.9)

(3.10)

Now, we can solve for Y:

:nbsphinx-math: begin{align} Y &= G_p G_c(Y_{sp} - Y\Y &=G_pG_cY_{sp} -G pG cY\Y+G_pG_c Y&=
G pGcY {sp}\I+G pGc)Y&=G pG_cY_{sp}\

Y&=A+G_pG_c)M-1} G_pG_cY_{sp}\Y &= Gamma Y_{sp}
end{align}"
We can calculate the value of this function easily.

4 O]I
(0, 111

]: Gamma = sympy.simplify ((I + G_p*G_c).inv () *G_p*G_c)

]: Gamma [0, 0]

Gcl (GCQGpIZGp21 - Gpll (G52Gp22 + 1))
Ge1GeaGpi12Gpa1 — (Ge1Gpin + 1) (GeaGpoo + 1)

]: Gamma [0, 1]

Ge2Gpi2
Ge1Ge2Gpi12Gpa1 — (Ge1Gpir + 1) (GeaGpoz + 1)

We notice that there is a common divisor in all the elements of I". This is due to the calculation of the inverse of
(I + G,G.), which involves calculation of the determinant |7 + G,G.|.

228 Chapter 3. Control

Dynamics and Control, Release 0.0.1

: Delta = (I + G_p*G_c) .det ()

Delta

Ge1Ge2Gp11Gpa2 — Ge1GeaGp12Gpa1 + G Gpi1 + GeaGpaz + 1

(Delta*Gamma) .simplify ()

Ge1 (Ge2Gp11Gprz — Ge2Gp12Gpa1 + Gpi1) Ge2Gpi2
Ge1Gpa1 Ge2 (Ge1Gp11Gpa2 — GaGp12Gpo1 + Gpaa)

Characteristic equation
This leads us to conclude that we can calculate the characteristic equation of the closed loop transfer function as |I +
GpG.|.

Notice that if we wanted the coupling the other way around, we could have worked with the same controller matrix
permuted:

: G_c*sympy.Matrix ([[O0, 1], [1, O011)

0 Gcl
G O

3.7.2 Multivariable Stability analysis

When we used proportional control on SISO systems we observed that there is usually an upper bound on the controller
gain K, above which the controlled system becomes unstable. Let’s investigate the equivalent calculation for MIMO
systems.

: import sympy

sympy.init_printing()
$matplotlib inline

: s = sympy.Symbol ('s")

This matrix is from example 16.2 in Seborg

: Gp = sympy.Matrix ([[2/(10*s + 1), sympy.Rational('1.5")/(s + 1)1,

[sympy.Rational ("1.5")/(s + 1), 2/(10*s + 1)]11)

2 _3
10s+1 2(s+1)
3 2

Gp

2(s+1) 10s+1

: K_cl, K c2 = sympy.symbols('K_cl, K c2', real=True)

Unlike in SISO systems, we now have a choice of pairing. We will see that there are differences in the stability behaviour
for the different pairings.

3.7. Multivariable control 229

[10]:

[14]:

Dynamics and Control, Release 0.0.1

: diagonal = True

: if diagonal:

Gc = sympy.Matrix([[K_c1, 0],
[0, K_c211)

else:
Gc = sympy.Matrix ([[0, K_c2],
[K_cl, 011)

I = sympy.Matrix([[1, O],
(0, 111)

The characteristic equation can be obtained from the |I + GpGc|. I divide by 4 here to obtain a final constant of 1 like
in the example to make comparison easier. Make sure you understand that any constant multiple of the characteristic
equation will have the same poles and zeros.

charpoly = sympy.poly (sympy.numer ((I + Gp*Gc) .det () .cancel()) /4, s)

Compare with Equation 16-20:

charpoly2 = sympy.poly (
sympy .numer (

((L + Gec[0,01%Gp[0,01)* (1 + Gec[l1,1]*Gp[1,1]) - Gc[0,0]1*Gell,1]*Gp[0,1]1*Gp[1,
—01]) .cancel ()
) /4, s)
charpoly == charpoly?2

True

Now that we have a characteristic polynomial, we can determine stability criteria using the routh function from
tbcontrol.symbolic.

from tbcontrol.symbolic import routh

: R = routh (charpoly)

: R[0, 0]

100

All the remaining elements of the left hand row must be positive (the same sign as the first element)
requirements = True

for r in R[1:, 0]:
requirements = sympy.And(requirements, r>0)

The graph below is supposed to match the textbook, but as of 2019-03-30 it does not. This appears to be a bug in
plot_implicit.

sympy.plot_implicit (requirements, (K_c2, -2, 7), (K_cl, -2, 4))

230 Chapter 3. Control

[15]:

Dynamics and Control, Release 0.0.1

<sympy.plotting.plot.Plot at 0x1217574e0>

As an alternative, let’s evaluate numerically

import numpy

import matplotlib.pyplot as plt

$matplotlib inline

f = sympy.lambdify ((K_c2, K_cl), requirements)
nK_c2, nK_cl = numpy.meshgrid (numpy.linspace (-2, 4, 300), numpy.linspace(-2, 7, 300))
r = £f(nK_c2, nK_cl)
]: plt.pcolor (nK_c2, nK_cl, r)
plt.ylabel ('K_cl")
plt.xlabel ('K_c2")
Text (0.5, 0, 'K_c2'")
7
B
5
4
o 3
)
= 2
1
]
-1
-2
3.7. Multivariable control 231

Dynamics and Control, Release 0.0.1

We can see that even this simple system can exhibit more complicated behaviour than we may expect from first order
systems because of the extra loops formed by the controllers.

3.7.3 Multivariable pairing (RGA)

For a 2$:nbsphinx-math: times"$2 system, we have 2 choices of pairing variables for distributed control:

Diagonal
Off-diagonal
Yp1 Ey e, LU e Y,
- cl 1 %Ypll -
— Gp12
Gc Gp
>—= Gp21
o E U Y
sp2 2 2 2
e G(.'? = sz;_: =
Ul Yl
’ GCQ ’ Gpll fﬁi’.
- Gpl 2
Y
7
} = Gp.?l
Yy E U Y.
p2 2 2 2
+ GC] Gp22 +

232 Chapter 3. Control

Dynamics and Control, Release 0.0.1

| Ga O
ch - |: 0 GCQ :|

| 0 Gea
GCO - |: Gcl 0 :|

Bristol developed the Relative Gain Array to determine good pairings based on only the plant transfer function matrix
G,. The elements of the RGA are defined as

(Oyi/Ouj)., open loop gain
(0yi/Ou;), closed loop gain

A
>\ij =

We could build A by direct evaluation of the above derivatives near some point given a time-domain model, but if we
already have a transfer function model, we can evaluate the steady-state gain matrix K by using the final value theorem.

: import sympy

sympy.init_printing /()

: s = sympy.Symbol ('s")

: def fopdt (k, theta, tau):

return k*sympy.exp (-theta*s)/ (tau*s + 1)

Using the system from example 16.5

: G_p = sympy.Matrix([[fopdt (-2, 1, 10), fopdt(l.5, 1, 1)]

[fopdt (1.5, 1, 1), fopdt(2, 1, 10)]1])
G_p

1.5¢"° 2e°
s+1 10s+1

_ 2e7° 1.5e~°
105+‘1 s+1

Unfortunately sympy cannot calculate limits on matrix expressions

#K = sympy.limit (G_p, s, O0)

But we can apply a function to the elements:

: def gain (G):

return sympy.limit (G, s, 0)

: K = G_p.applyfunc(gain)

-2 15
1.5 2

We can then calculate A = K ® H where H = (K~1)7:

3.7. Multivariable control 233

[14]:

[147]:

[15]:

[17]:

Dynamics and Control, Release 0.0.1

We can do the same calculation (faster) using numpy:

: import numpy

: def fopdt (k, theta, tau):

return k*numpy.exp(-theta*s)/ (tau*s + 1)

=~
Il

numpy.matrix ([[fopdt (-2, 1, 10), fopdt(l.5, 1,

: Lambda = K.multiply_elementwise (K.inv () .transpose())
Lambda
0.64 0.36
0.36 0.64

1)1

[fopdt (1.5, 1, 1), fopdt(2, 1, 10)]]

)

The . A attribute in matrices is the matrix as a numpy . array, which multiplies elementwise by default.

K.A*K.I.T.A

array ([[0.64, 0.36],
[0.36, 0.64]11)

The numpy developers recommended that you should use numpy .array instead of numpy.matrix as much as

possible. I find this makes the notation harder to read:

K = numpy.array([[fopdt (-2, 1, 10), fopdt (1.5, 1,
[fopdt (1.5, 1, 1), fopdt(2, 1, 10

: K*numpy.linalg.inv(K).T

array ([[0.64, 0.36],
[0.36, 0.64]11)

Simulation results

Let’s simulate this system to get an idea of how the control works out

import tbcontrol
tbcontrol.expectversion('0.1.4")
from tbcontrol import blocksim

: import numpy

1
)

)1,
11)

N = 2
G = {}
234

Chapter 3. Control

[21]:

[24]:

[27]:

Dynamics and Control, Release 0.0.1

gains = [[-2, 1.5],
[1.5, 211
taus = [[10, 1],
[1, 10]]
delays = [[1, 11,
[1, 111

for inp in range (N) :
for outp in range(N):
G[(outp, inp)] = blocksim.LTI(f"G_{outp/_{inp}", f"u_{inp}", f"yp_{inp/_{outp}/

gains[outp] [inp], [1, taus[outp] [inpll,—
—delays[outp] [inp])

inputs = {'ysp_0': blocksim.step(),
'yvsp_1': blocksim.step(starttime=50) }

sums = {f'y_{outp/)': [f"+yp_{inp}_ {outp}" for inp in range (N)] for outp in range (N)}
for i in range(N) :
sums [f'e_{i}'] = [f'+ysp_{i}', f£'-y_{i}']

sums
{'y_0"'": ['"+yp_0_0', '"4+yp_1_0'],

'y_1': ['"+yp_0_1" 'typ_1_1'1],

'e_ 0': ['"+ysp_0', '-y_0'],

'e_1'": ['"4ysp_1', '-y_1'l}

import matplotlib.pyplot as plt
%matplotlib inline

def simulate (autol=True, Kl=-1, tauIl=10, auto2=True, K2=0.5, taul2=10):
controllers = {'Gc_0': blocksim.PI('Gc_0', 'e_0', 'u_0', K1, tauIll),
'Ge_1': blocksim.PI('Gec_1', 'e_1', 'u_1', K2, taul2)}

controllers['Ge_0'].automatic = autol
controllers['Ge_1'].automatic = auto2

ts = numpy.arange (0, 100, 0.125)

diagram = blocksim.Diagram(list (G.values()) + list(controllers.values()), sums,.
—inputs)
result = diagram.simulate (ts)
plt.figure ()
plt.plot (ts, result['u_0'])
plt.plot (ts, result['u_1'])
plt.figure()
plt.plot (ts, result['y_0'])
plt.plot(ts, result['ysp_0'])
plt.plot (ts, result['y_1'])
plt.plot (ts, result['ysp_1'])

3.7. Multivariable control 235

Dynamics and Control, Release 0.0.1

[28]: from ipywidgets import interact

[29]: interact (simulate,
autol=[True, False], Kl=(-2., 0), taull=(1., 50),
auto2=[True, False], K2=(0., 2), taulI2=(1., 50))

interactive (children= (Dropdown (description='autol', options=(True, False), .
—value=True), FloatSlider (value=-1.0..

[29]: <function __main__ .simulate (autol=True, Kl=-1, taull=10, auto2=True, K2=0.5,.
—taul2=10)>

[1]: import numpy
import matplotlib.pyplot as plt

[2]: Smatplotlib inline

3.7.4 Eigenvalue problem

Matrix transformaion is written as
y = Ax
A different vector in the same direction can be written as scalar multiplication:
y = Ax
Equating these ys yields:
Ax =X x= (A—-A)x=0

det(A—) =0

The eigenvalue problem can also be collected with A being a diagonal matrix containing all the eigenvalues and X con-
taining the eigenvectors stacked column-wise. This leads to the eigenvalue decomposition:

AX =XA=A=XAX"!
with
A = diag(\;)
If we try to find a similar decomposition with different constraints, we can write
A=UDV#"

If D is a diagonal matrix and U and V" are unitary, this is the singular value decomposition.

In Skogestad
A=Uxv#

Y = diag(o;)

236 Chapter 3. Control

http://en.wikipedia.org/wiki/Unitary_matrix

[79]:

[80]:

[81]:

[82]:

Dynamics and Control, Release 0.0.1

from ipywidgets import interact

def plotvector(x, color='blue'):
plt.plot ([0, x[0,0]]1, [0, x[1,0]], color=color)

import matplotlib.patches as patches

Let’s investigate the properties of this matrix:

: A = numpy.matrix ([[4, 3],

(2, 111

The eigenvectors and eigenvalues can be calculated as follows. We also calculate the output vectors associated with a unit

vector input in the eigenvector directions.

: A

: matrix ([[4, 3],
(2, 111
v = numpy.asmatrix (numpy.random.random(2)) .T
v = A*v
v = v/numpy.linalg.norm(v)
v

matrix ([[0.89474813],
[0.44657115]11)

lambdas, eigvectors = numpy.linalg.eig(A)
evl = lambdas[0] *eigvectors[:, 0]
ev2 = lambdas[1l] *eigvectors[:, 1]

The singular values determine the main axes of the translation ellipse of the matrix. Note that the numpy .linalg. svd

function returns the conjugate transpose of the input direction matrix.

U, S, VH = numpy.linalg.svd(A)
V = VH.H
ellipseangle = numpy.rad2deg (numpy.angle (complex (*U[:, 0])))

def interactive(scale, theta):
x = numpy.matrix ([[numpy.cos (theta)], [numpy.sin(theta)]l])
y = A*x

plotvector (x)

plotvector (y, color='red')

plotvector (evl, 'green')

plotvector (ev2, 'green')

plotvector (V[:, 0], 'magenta')

plotvector (V[:, 1], 'magenta')

plt.gca() .add_artist (patches.Circle ([0, 0], 1,
color="blue',
alpha=0.1))

plt.gca() .add_artist (patches.Ellipse ([0, 0], S[0]1*2, S[1]*2,

(continues on next page)

3.7. Multivariable control

237

Dynamics and Control, Release 0.0.1

(continued from previous page)

ellipseangle,
color="'red',
alpha=0.1))
plt.axis([-scale, scale, -scale, scale])
plt.axes () .set_aspect ('equal')
plt.show ()

interact (interactive, scale=(1., 10), theta=(0., numpy.pi*2))

interactive (children=(FloatSlider (value=5.5, description='scale', max=10.0, min=1.0),.
—FloatSlider (value=3.141592653589793, description='theta', max=6.283185307179586),
—Qutput ()), _dom_classes=('widget-interact',))

[83]: <function _ _main__ .interactive>

3.7.5 Decoupling

Given a general multivariable system with transfer function matrix G, a decoupler attempts to combine with the system
to form a diagonal whole.

Y, E U U Y Y
spl_ < 1 G 11 < 1 Gyt 1< 1
Yo
Ty MN—U2; Gp12
Ge T
Yy
Ty, 3 G,o1
lil2 J P
Yoo E U U Y Y.
2 < 21 6., 22 é+§ 2 G2 22 K< 2

[1]: import sympy
sympy.init_printing/()

[2]: G_pll, G_pl2, G_p2l, G_p22 = sympy.symbols('G_pll, G_pl2, G_p2l, G_p22'")
G_p = sympy.Matrix([[G_pll, G_pl2], [G_p2l, G_p22]])
G_p

el Gpll Gp12
Gp21 Gp22

238 Chapter 3. Control

: G_s
G_s

Dynamics and Control, Release 0.0.1

1. Inverse-based

Wouldn't it be nice if the system didn’t have interaction? In other words, we could choose T" such that we have this system
with the same diagonal elements as the original system but zeros in the off diagonals.

= sympy.Matrix ([[G_pll, 0],[0, G_p22]])
Gpll 0
0 Gpao

Recalling that the combination of T" and G, in series is G, T', we can solve for the decoupler directly

GpT =G, .. T =Gp'G,

= G_p.inv () *G_s
Gp11Gp22 _ Gp12Gp22
Gpquzz—Cépqum Gp11Gp22—Gp12Gp21
_ pl1-p21 p11Gp22
Gp11Gp22—Gp12Gpa1 Gp11Gp22—Gp12Gp21

Let’s see if that worked:

1: G_pT = G_p*T

sympy.simplify (G_pT)
Gpu 0
0 Gp22

Pros:

¢ Controller design can be based on open loop model

» Apparent dynamics (what the controller sees) are simple
Cons:

T is often not physically realisable

e T is complicated

2. Zero off-diagonals

A more common strategy is to solve directly for the off-diagonal elements of set equal to zero.

So we just want

GpT = [dl O}

0 do

Note the difference between the first method and this one - here we are not specifying the diagonal at all, we just want
the off-diagonals to be zero.

3.7. Multivariable control 239

Dynamics and Control, Release 0.0.1

| T
T

]: T21, T12 = sympy.symbols ('T21, T12")

T = sympy.Matrix([[1, T12],
[T21, 111)

wantdiagonal = G_p*T

sol = sympy.solve ([wantdiagonal[0,1], wantdiagonal([l, 0]], [T21, T12])

1 _ Gpi2
Gp11
_ Gz 1

Gpo2

]: T.subs(sol)

So this is the classic/traditional decoupler shown in the diagram (with unit passthrough on the diagonals). This changes
the transfer function the controller “sees” to

]: G_p*T.subs (sol)

Gpa2

_ Gp12Gpo1
0 Gpgz G

Gp12G
Gpll_ p12Gp21 0 ‘|

Pros:

 Relatively simple design process

* Less complicated decoupler than the inverse-based method
Cons:

» Apparent plant may be higher order than the actual plant

« Still requires an inverse, may not be physically realisable (but more likely than method 1)

3. Adjugate method

The adjugate (previously calld the adjoint) of a matrix will also diagonalise a system

= G_p.adjugate ()
Gpa2 —Gpi2
_Gp21 Gpll
]: G_p*T
Gp11Gp22 — Gp12Gp21 0
0 Gp11Gpa2 — Gp12Gpo1
Pros:
¢ Decoupler guaranteed to be physically realisable because it only requires “forward” models of the system.
Cons:

240 Chapter 3. Control

Dynamics and Control, Release 0.0.1

* Apparent plant now much higher order (look at the products in the G,T" expression)

3.7.6 Model Predictive Control

The general idea of figuring out what moves to make using optimisation at each time step has become very popular due
to the fact that a general version can be programmed and made very user friendly so that the intricacies of multivariable
control can be handled by a single program.

In this notebook I will show how a single time step’s move trajectory is calculated. We’ll use the same system as we used
for the Dahlin controller

: import numpy

import scipy.signal

import scipy.optimize

import matplotlib.pyplot as plt
$matplotlib inline

We start with a linear model of the system

1
T 1552485+ 1
: G = scipy.signal.lti([1], [15, 8, 11)
: plt.plot (*G.step())
[<matplotlib.lines.Line2D at 0x1cl146a8390>]
10 +
05 1
06 -
04 -
0.2 1
0.0
0 5 10 15 2 5 W B

Our goal is to find out what manipulations must be made (changes to u) in order to get the system to follow a specific
desired trajectory (which we will call r for the reference trajectory). We will allow the controller to make a certain number
of moves. This is called the control horizon, M. We will the observe the effect of this set of moves (called a “move plan”)
for time called the prediction horizon (P).

Controller parameters

3.7. Multivariable control 241

[107]:

[117:
[117:

[12]:

Dynamics and Control, Release 0.0.1

M = 10 # Control horizon
P = 20 # Prediction horizon
DeltaT = 1 # Sampling rate

tcontinuous = numpy.linspace (0, P*DeltaT, 1000)

some closely spaced time points

tpredict = numpy.arange (0, P*DeltaT, DeltaT) # discrete points at prediction horizon

We choose a first order setpoint response similar to DS or Dahlin

tau_c = 1
r = 1 — numpy.exp (-tpredict/tau_c)

For an initial guess we choose a step in .

u = numpy.ones (M)

Initital state is zero

x0 = numpy.zeros (G.to_ss () .A.shape[0])

def extend(u) :

"""We optimise the first M values of u but we need P values for prediction"""

return numpy.concatenate ([u, numpy.repeat (u

def prediction(u, t=tpredict, x0=x0):
"""Predict the effect of an input signal"""
t, y, x = scipy.signal.lsim(G, u, t, X0=x0,
return y

plt.plot (tpredict, prediction (extend(u)))

[<matplotlib.lines.Line2D at 0x1cl475ccf8>]

interp=False)

0.8 4

06 4

04

02z

0.0 4

00 25 50 75 100 125 150 175

def objective (u, x0=x0):

"""Calculate the sum of the square error for the cotnrol problem"""

y = prediction (extend(u))
return sum((r - y)**2)

This is the value of the objective for our step input:

242

Chapter 3. Control

[14]:

[15]:

[17]:

Dynamics and Control, Release 0.0.1

objective (u)

3.506966650333838

Now we figure out a set of moves which will minimise our objective function
result = scipy.optimize.minimize (objective, u)

uopt = result.x
result. fun

0.0009187720232727162

Resample the discrete output to continuous time (effectively work out the O order hold value)

ucont = extend (uopt) [((tcontinuous-0.01)//DeltaT) .astype (int)]

Plot the move plan and the output. Notice that we are getting exactly the output we want at the sampling times. At this

point we have effectively recovered the Dahlin controller.

: def plotoutput (ucont, uopt):

plt.figure ()

plt.plot (tcontinuous, ucont)
plt.x1im ([0, DeltaT* (P+1)])
plt.figure ()

plt.plot (tcontinuous, prediction (ucont, tcontinuous), label='Continuous response')

plt.plot (tpredict, prediction (extend(uopt)), '-o', label='Optimized response')

plt.plot (tpredict, r, label='Set point')
plt.legend()

plotoutput (ucont, uopt)

20 1

10 1

-10 - B

00 25 50 75 100 125 150 175 200

3.7. Multivariable control

243

Dynamics and Control, Release 0.0.1

10 1

0.8 -

0.6 -

0.4 1

02 —— (ontinuous response
#— Optimized response

0.0 - — 5Set point

00 25 50 75 100 125 150 175 200

One of the reasons for the popularity of MPC is how easy it is to change its behaviour using weights in the objective
function. Try using this definition instead of the simple one above and see if you can remove the ringing in the controller
output.

: def objective (u, x0=x0):

y = prediction (extend(u))

umag = numpy.abs (u)

constraintpenalty = sum(umag[umag > 2])

movepenalty = sum(numpy.abs (numpy.diff (u)))

strongfinish = numpy.abs(y[-1] - r[-1])

return sum((r - y)**2) + O*constraintpenalty + 0.l*movepenalty + O*strongfinish

3.8 Control Practice

3.8.1 Control valve design

This is example 8.2 in Seborg, but worked a little differently to allow choice of R and C.,

: import numpy

import scipy.optimize

import matplotlib.pyplot as plt
from ipywidgets import interact
tmatplotlib inline

Constant pump head
DeltaPa = 40
Guess for g
q0 = 100
The MEB reduces to quadratic form:
AP, = AP,.+ AP,

AP, — CLhch - CLU(JQ =0

244 Chapter 3. Control

Dynamics and Control, Release 0.0.1

[3]: def MEBcoeffs(l, R, Ccv, characteristic='egperc'):
ahc = 30/200**2

if characteristic == 'linear':
fl1 =1
elif characteristic == 'eqgperc':

fl1 = R**(1 - 1)
(1/(Ccv*£fl)) **2

av

return [-ahc - av, 0, DeltaPa]

[4]: def positive(x):
return x[x>0][0]

[5]: 1s = numpy.linspace(0.01, 1)

[6]: def curve (R, Ccv, characteristic):
as [positive (numpy.roots (MEBcoeffs(l, R, Ccv, characteristic))) for 1 in 1ls]
plt.plot(ls, gs)
plt.plot ([0, 1], [0, max(gs)])
plt.xlabel ('Valve 1ift (1)")
plt.ylabel('g")
plt.ylim ([0, 250])

[7]: curve (50, 20, 'eqgperc')

250

200 1

150 1

100 1

- T T
00 0z 04 0G 0.8 10
Walve lift (1)

[8]: interact (curve,
R=(5., 100.),
Ccv=(5., 200.),
characteristic=['linear', 'eqgperc'])

3.8. Control Practice 245

Dynamics and Control, Release 0.0.1

230

200 1

150 1

100 1

00 0z 04 06 0.8 10
Walve lift (1)

[8]: <function _ main__ .curve>

246

Chapter 3. Control

CHAPTER
FOUR

This notebook times a couple of ways of integrating a number of tanks in series

import matplotlib.pyplot as plt
matplotlib inline

Ntimes = 1000
Nstates = 20
t_end = 100

D = 2

import numpy

4.1 No delays

4.1.1 Normal way

Use a growing list for the history and an array for states

ts numpy.linspace (0, t_end, Ntimes)
dt = ts[1]

Fin = 2

$%time
statehistory = []
states = numpy.ones (Nstates)
for i, t in enumerate(ts):
Fout = states[0]*k
dsdt = [1/A* (Fin - Fout)]
for j in range(l, Nstates):
Fin_j = k*states[j - 1]
Fout_j = k*states[j]
dsdt .append (1/A* (Fin_j - Fout_j))

states += numpy.array (dsdt) *dt

we have to copy because the above += is in place.

statehistory.append(states.copy())

SIMULATION

247

Dynamics and Control, Release 0.0.1

Wall time: 32 ms

[7]: plt.plot(ts, statehistory);

204

18 A

16 A

144

124

104

4.1.2 Preallocation

If you are used to Matlab you may imagine pre-allocating statehistory would save lots of time

[8]: $%time
statehistory = numpy.empty ((Ntimes, Nstates))
states = numpy.ones (Nstates)
for i, t in enumerate(ts):
Fout = states[0]*k
dsdt = [1/A* (Fin — Fout)]
for j in range(l, Nstates):
Fin_j = k*states[] - 1]
Fout_j = k*states[]]
dsdt.append (1/A* (Fin_j - Fout_7j))

states += numpy.array (dsdt) *dt
statehistory([i, :] = states

Wall time: 32 ms

[9]: plt.plot(ts, statehistory);

248 Chapter 4. Simulation

Dynamics and Control, Release 0.0.1

Same result, much the same amount of time.
4.2 Dead time
Now, let’s introduce a delay between each tank.

4.2.1 Lists and interp

[10]: %$%time
statehistory = [[] for _ in states]
states = numpy.ones (Nstates)

for i, t in enumerate(ts):
Fout = states[0]*k
dsdt = [1/A* (Fin - Fout)]
for j in range(l, Nstates):
delayed_Fin_3j = k* (numpy.interp(t - D, ts[:1], statehistory[j-1]) if t > O.
—else states[j-1])
Fout_j = k*states[]]
dsdt .append (1/A* (delayed_Fin_j — Fout_7j))

states += numpy.array (dsdt) *dt

for j, s in enumerate(states):
statehistory[j].append(s)

Wall time: 639 ms

[11]: plt.plot(ts, numpy.array(statehistory) .T);

4.2. Dead time 249

Dynamics and Control, Release 0.0.1

204

18+

16

14 -

124

104

OK, that took a lot longer.

4.2.2 Approximate indexing

What if we just use indexing instead of interpolation?

[12]: %$%time
statehistory = [[] for _ in states]
states = numpy.ones (Nstates)

for i, t in enumerate(ts):
Fout = states[0]*k
dsdt = [1/A* (Fin - Fout)]
for j in range(l, Nstates):
delayed Fin_7j = k* (statehistory[j-1]1[1i - int(D/dt)] if t > D else states[j-1])
Fout_j = k*states[]]
dsdt .append (1/A* (delayed_Fin_j - Fout_7j))

states += numpy.array (dsdt) *dt

for j, s in enumerate (states):
statehistory[j] .append(s)

Wall time: 49 ms

OK, we’re back to almost the same time as before, but do we get the same result?

[13]: plt.plot(ts, numpy.array(statehistory) .T);

250 Chapter 4. Simulation

Dynamics and Control, Release 0.0.1

18+ I
[[/ f F

16 p |

12 - 1] .
' 100

10 1 .
T T
H 20 40

No. the rounding errors build up. If we use this strategy we had better choose a step size which divides cleanly into the

dead time.
We covered the idea of simulating an arbitrary transfer function system in a previous notebook. What happens if we have

to simulate a controller (specified as a transfer function) and a system specified by differential equations together?

4.3 Nonlinear tank system

Let’s take the classic tank system, with a square root flow relationship on the outflow and a nonlinear valve relationship.

‘Fira

V h
F;u?

A
:nbsphinx-math:begin{align}
frac{dV}{dt} &= (F_{in} - F_{out}) \ h &= frac{V}{A} \ f(x) &= alpha*{x - 1} \ F_{out} &= K f(x) sqrt{h} \

end{align}"

import numpy

import matplotlib.pyplot as plt
251

[1]:
tmatplotlib inline

4.3. Nonlinear tank system

Dynamics and Control, Release 0.0.1

Parameters

[2]: A =
alph
K =

2
a = 20
2

Initial conditions (notice I'm not starting at steady state)

Valve characterisitic

[4]: def

f(x):
return alpha**(x — 1)

Integration time

[5]: ts =
dt

numpy.linspace (0, 100, 1000)
ts[1]

Notice that I have reordered the equations here so that they can be evaluated in order to find the volume derivative.

[6]: hs =
for

[7]1: plt.

[7]: [<ma

15 4

14 -

134

12

11 4

104

[1
t in ts:
h = V/A
Fout = K*f (x) *numpy.sqgrt (h)
dvdt = Fin - Fout
V += dvdt*dt

hs.append (h)

plot (ts, hs)

tplotlib.lines.Line2D at 0x10e93ca20>]

0 20 40 &0 A0 100

252

Chapter 4. Simulation

[107]:

[117]:

[12]:

[137:

[13]:

Dynamics and Control, Release 0.0.1

4.4 Pl Control

Now we can include a controller controlling the level by manipulating the valve fraction

import scipy.signal

Let’s do a PI controller:

1 }(07784*}(050
G.= K, (14 —)=—C¢HsTRC5
¢ o1+ 7'13) 778 + 050

tau_1i = 5

In versions of scipy < 1.0, Gc would automatically have a . A attribute. After 1.0, we need to convert to state space
explicitly with .to_ss ().

Gc = scipy.signal.lti([Kc*tau_1i, Kc], [tau_i, 0]).to_ss()
hsp = 1.3

V=1

hs = []

XC = numpy.zeros ([Gc.A.shape[0], 11)
for t in ts:

h = V/A

e = hsp - h # we cheat a little here - the level we use to calculate the error.
—1s from the previous time step

e is in the input to the controller, yc is the output
dxcdt = Gec.A.dot (xc) + Gec.B.dot (e)
yc = Gc.C.dot (xc) + Gc.D.dot (e)

x = x0 + yc[0,0] # x0 1s the controller bias

Fout = K*f (x) *numpy.sqgrt (h)
dvdt = Fin - Fout

V += dvdt*dt
xc += dxcdt*dt

hs.append (h)

plt.plot (ts, hs)

[<matplotlib.lines.Line2D at O0x1cla0f31d0>]

4.4. Pl Control 253

Dynamics and Control, Release 0.0.1

14 -

124

104

0.8 4

0.6 4

4.5 Classes

100

You are already familiar with defining your own functions, like this:

: def

1 £(2)

But what about defining your own types? First, lets remind ourselves of some built-in types:

tjla =

: int

OK, so there is a thing called an int.
: int

: int

We can make a new int by calling the type name as a function:

: 0

To build our own type, we can use the class keyword:

f(a):
return a

2

: type(a)

: int ()

: class MyClass:

pass

254

Chapter 4. Simulation

Dynamics and Control, Release 0.0.1

[8]: MyClass

[8]: __main__ .MyClass
[9]: instance = MyClass ()

[10]: type (instance)

[10]: __main__.MyClass

4.5.1 What is this good for?

The essence of object-oriented programming is allowing for data and algorithms to be combined in one place. Functions
allow us to re-use algorithms, but classes allow us to combine them with local data:

[11]: class MyClass2:
def _ init_ (self, name):
print ("I'm in __init_ !")
self.name = name

def say_my_name (self) :
print (self.name)

[12]: s = MyClass2('Carl")

I'm in __init_ !
[13]: s.say_my_name ()
Carl

4.5.2 Objects must be “like” things

[14]: class Person:
def _ init_ (self, name):
self.name = name

def display_name (self):
print (self.name)

[15]: carl = Person("Carl Sandrock")

[16]: carl.display_name ()

Carl Sandrock

4.5. Classes 255

Dynamics and Control, Release 0.0.1

4.6 Taking off the engine cover

How does Python “know” how to add two objects? Or what they should look like when printed to the console? Let’s dig

into the underlying mechanisms that Python provides for this.

a =2
b =3
a + b
5

What methods does a have?

dir (a)

['__abs ',
' add__ "'

JR— — ’
'_and__"',

' _bool__ "',

' ceil_ 7,
'__class_ ',

' __delattr_ ',
' dir__ "',
'__divmod__ "',
'__doc ',
_eq "',
'__float__ "',

' _floor_ ',

' floordiv__',
'_ format__ ',
__ge
'__getattribute_ ',
'__getnewargs__"',
'_gt__ ",

' _hash '

_

v

v
’

'__index_ ',

' init_ ',
'__init_subclass_ ',
' int_ "',

' invert_ ',

' le_ ",

' 1lshift_ ',
o1t Y,

'_mod__"',
' mul_ "',

'—pOS_' I4
__pow__"',
'__radd__"',
'__rand__ "',
'__rdivmod_ ',

' _reduce_ ',
'__reduce_ex__ ',
' __repr_ ',

(continues on next page)

256

Chapter 4. Simulation

Dynamics and Control, Release 0.0.1

(continued from previous page)

' _rfloordiv_ "',
' rlshift_ ',
'__rmod__ ",

' rmul__ "',
'_ror_ "',
'__round__',
'__rpow__"',

' _rrshift_ ',
'__rshift_ ',
'__rsub_ "',

'__ rtruediv__',
'__rxor__ ',

' _setattr_ ',

' sizeof_ ',

' str__ "',
'__sub__"'",
'__subclasshook__ "',
' _truediv__"',
'__trunc__ ',
'__xor__ ',
'bit_length',
'conjugate',
'denominator’',
'from_bytes',
'imag',
'numerator’',
'real',

'to_bytes']

All those methods with ___ on both sides are methods that are not normally shown in the tab completion list for the object.
They are often called “dunder” methods for brevity, so you would say “dunder abs” for __abs__ . In the documentation
for Python these are called “special methods”.

Special methods are how some fundamental properties of objects are implemented in Python. For instance, you can safely
imagine that a + D is translated to

This is the mechanism by which different kinds of objects can do very different kinds of things when + is used on them:

a = "'2"
b = '3"
a +b
123'

1237

We've already encountered one special method: __init__. Let’s build a class which stores a value internally.

class TestClass:
def _ init_ (self, wvalue):
self.value = value

4.6. Taking off the engine cover 257

https://docs.python.org/3/reference/datamodel.html#special-method-names

[12]:

[13]:

[13]:

[14]:

[15]:

[17]:

[17]:

b

Dynamics and Control, Release 0.0.1

‘We can now create objects of class TestClass:

a = TestClass (2)
TestClass (3)

But they are a bit hard to use. For one, they don’t display anything meaningful when we display them

a

<__main__ .TestClass at 0x10750fcc0>

We can extend TestClass witha ___repr___ method. This is short for representation and is used in the console and the
notebook to show an object. By convention, the ___repr___ method returns a string that could be copy-pasted to create
the object.

class TestClass:
def _ init_ (self, wvalue):
self.value = value
def _ repr__ (self):
return "TestClass ()".format (self.value)

a = TestClass (2)
b = TestClass (3)

a

TestClass (2)

Great, at least we can see what we’re working with now. But let’s say we want to make this class be able to support
addition. At the moment, this doesn’t work:

a + b

,,,
TypeError Traceback (most recent call last)
<ipython-input-14-f96fb8f649b6> in <module> ()

—=> 1 a + b

TypeError: unsupported operand type(s) for +: 'TestClass' and 'TestClass'

class TestClass:
def _ init_ (self, wvalue):
self.value = value

def _ repr__ (self):
return "TestClass ()".format (self.value)

def add__ (self, other):

return TestClass (self.value + other.value)

a = TestClass (2)
b = TestClass (3)

a + b

TestClass (5)

This should give you a glimpse into how libraries like SymPy or Numpy obtain their effects. They are using these
mechanisms to make objects which “do the right thing” when they are added together, divided and multiplied, as well as

258 Chapter 4. Simulation

Dynamics and Control, Release 0.0.1

giving them “normal” non-underscore methods for additional manipulation. All of the objects you have used to do math
so far have implemented these operations. Think of sympy . Symbol or the numpy.array.

4.7 Objects

Have a look at the Hybrd system simulation notebook before reading this one.

In the for loop we used to implement the Euler integration in that notebook, it was clear that we were working with two
systems - the tank system and the controller. We can see some similarities between the two systems: both of them have
an input (x for the tank, e for the controller) and an output (h for the tank, x for the controller), both of them have an
internal state (V" and the integral of the error). However, we ended up having to repeat many calculations for the two of
them, and the code corresponding to the two systems ended up in different places between the two of them.

Objects allow us to group each system’s equations and data together so that our loop can be cleaner and the parts of the
code that are specific to each system can be all in one place.

import numpy

import scipy.signal

import matplotlib.pyplot as plt
$matplotlib inline

4.7.1 Tank system

We start by defining a c1ass for the tank system:

class TankSystem:
def _ init__ (self, A, alpha, K, V, Fi):
""" This special function gets called when an object of this class 1is created"

"o
—

self.A = A
self.alpha = alpha
self.K = K

self.Fi = Fi
self.change_state (V)

def f(self, x):
return self.alpha**(x - 1)

def change_input (self, x):
self.Fo = self.K*self.f (x) *numpy.sqrt (self.h)

def change_state(self, V):
self.state = self.V =V
self.output = self.h = self.V/self.A

def derivative (self, x):
self.change_input (x)
dvdt = self.Fi - self.Fo
return dvdt

The functions defined inside the class are known as methods and are called as object .method (arguments). You
may imagine that object .method (arguments) gets translated to method (object, arguments) before it
is called, so the self argument to methods will be the object whose method is called.

4.7. Objects 259

[3]:

Dynamics and Control, Release 0.0.1

4.7.2 Pl Controller

And another for the PI controller.

class PIController:
def _ init_ (self, Kc, tau_i, bias):

self.Kc = Kc
self.G = scipy.signal.lti ([Kc*tau_i, Kc], [tau_i, 0])
self.Gss = self.G.to_ss ()
self.change_state (numpy.zeros((self.Gss.A.shape[0], 1)))
self.bias = self.output = bias
self.y = self.bias

def change_input (self, u):
self.y = self.Gss.C.dot(self.x) + self.Gss.D.dot(u) + self.bias
self.output = self.y[0, O] # because y 1is a matrix, and we want a scalar.
—output

def change_state(self, x):
self.x = self.state = x

def derivative(self, e):
return self.Gss.A.dot (self.x) + self.Gss.B.dot (e)

ts = numpy.linspace (0, 100, 1000)
dt ts[1]

4.7.3 Generic integration

Now we can integrate. Notice that in the code below there is no specific reference to tanks or PI controllers. To change
the type of controller or the system, we can change the kinds of objects we create as system and controller

def control_simulation(system, controller):
outputs = []
for t in ts:
system.change_input (controller.output)
e = sp — system.output

controller.change_input (e)

system.change_state (system.state + system.derivative (controller.output) *dt)
controller.change_state (controller.state + controller.derivative (e) *dt)

outputs.append(system.output)
return outputs

system = TankSystem(A=2, alpha=20, K=2, V=2, Fi=1)
controller = PIController (Kc=-1, tau_i=5, bias=0.7)

outputs = control_simulation(system, controller)

260 Chapter 4. Simulation

[9]:

[9]:

[10]:

Dynamics and Control, Release 0.0.1

plt.plot (ts, outputs)

[<matplotlib.lines.Line2D at 0x111796550>]

N

135 A

130 A

125 A

120 A

115 A

110 A

105 A

0 20 40 60 80 100

This allows us to simulate different situations easily.

outputs = control_simulation (system=TankSystem(A=2, alpha=10, K=2, V=2, Fi=1),
controller=PIController (Kc=-2, tau_i=5, bias=0.5))
plt.plot (ts, outputs);

135 A

130

125 A

120 A

115 A

110 A

105 A

0 20 0 60 a0 100

4.7.4 Re-using the interface

Note that we could also define a completely new system. The controller doesn’t “know” it is a level controller in this case,
so let’s build a class which would represent an LTI system under control:

: class LtiSystem:

def _ init_ (self, numerator, denominator):
self.G = scipy.signal.lti (numerator, denominator)
self.Gss = self.G.to_ss|()
self.change_state (numpy.zeros((self.Gss.A.shape[0], 1)))

(continues on next page)

4.7. Objects 261

[12]:

[13]:

Dynamics and Control, Release 0.0.1

(continued from previous page)

self.y = self.output = 0

def change_input (self, u):
self.y = self.Gss.C.dot (self.x) + self.Gss.D.dot (u)
self.output = self.y[0, O]

def change_state(self, x):
self.x = self.state = x

def derivative (self, e):
return self.Gss.A.dot (self.x) + self.Gss.B.dot (e)

Now we can simulate the response of an arbitrary LTI system to an arbitrary controller as long as we have classes to
represent their behaviour!

outputs = control_simulation(system=LtiSystem (1, [1, 11),
controller=PIController (Kc=1, tau_i=10, bias=0))
plt.plot (ts, outputs)

[<matplotlib.lines.Line2D at 0x111957e10>]

124

104

05 4

06 4

04

02 A

0.0 4

0 20 40 &0 80 100

Look how easy it becomes to compare control performance:

system = TankSystem(A=2, alpha=10, K=2, V=2, Fi=1)

controllers = [PIController (Kc=K, tau_i=10, bias=0) for K in [-1, -2, -10]]
for controller in controllers:

outputs = control_simulation(system, controller)

plt.plot (ts, outputs, label=r'SK c={/}S$'.format (controller.Kc))
plt.legend()

<matplotlib.legend.Legend at 0x1119a25c0>

262 Chapter 4. Simulation

Dynamics and Control, Release 0.0.1

187 — Ke=-1
17 1 Ke= -2
Lo] — k=10
15 1
14 1
13 1
12 1
111

0 20 40 60 80 100

4.8 A discrete controller class

Let’s extend the example from our previous object-oriented simulation notebook to discrete controllers.

import numpy

import scipy.signal

import matplotlib.pyplot as plt
tmatplotlib inline

We start by defining a class for the tank system again:

class TankSystem:
def _ init__ (self, A, alpha, K, V, Fi):

""" This special function gets called when an object of this class 1s created"

e
self.A = A
self.alpha = alpha
self.K = K
self.Fi = Fi
self.change_state (V)

def f(self, x):
return self.alpha**(x - 1)

def change_input (self, x):

self.Fo = self.K*self.f (x)*numpy.sqrt (self.h)

def change_state(self, V):
self.state = self.V =V
self.output = self.h = self.V/self.

def derivative (self, x):
self.change_input (x)
dvdt = self.Fi - self.Fo
return dvdt

But this time we’ll do a discrete controller:

A

4.8. A discrete controller class

263

[3]:

Dynamics and Control, Release 0.0.1

class DiscreteController:
def _ init_ (self, DeltaT, Kc, tau_i, bias):
self.DeltaT = DeltaT
self.Kc = Kc
self.tau_i = tau_i

self.next_sample_time = 0
self.error_sum = 0
self.bias = self.output = bias

def update(self, u, t):
if t >= self.next_sample_time:
self.error_sum += u
self.output = self.Kc*(u + 1/self.tau_i*self.error_sum)
self.next_sample_time += self.DeltaT

I've changed the way we update the controller here to accomodate the fact that discrete controllers don’t have states to
integrate, so we don’t need the derivat ive method. The way I've built this class requires that the update method be
called with strictly ascending times in t. Note that this class corresponds very closely to a physical box. All the sampling
is taking place inside the class and it is designed to be updated in a “normal” Euler integration loop. See how using classes
makes the calculations which are about a particular physical object (the controller) stay together in the code rather than
being spread out in lots of places?

Of course, we still have to test that this works:

ts = numpy.linspace (0, 100, 1000)
dt = ts[1]

sp = 1.3

I've changed this function to use the new update methods, but otherwise it is similar to the previous one.

def control_simulation_discrete(system, controller):
outputs = []
for t in ts:
system.change_input (controller.output)
e = sp — system.output
controller.update (e, t)

system.change_state (system.state + system.derivative (controller.output) *dt)

outputs.append(system.output)
return outputs

system = TankSystem(A=2, alpha=20, K=2, V=2, Fi=1)
controller = DiscreteController (DeltaT=1, Kc=-1, tau_i=5, bias=0.7)

outputs = control_simulation_discrete(system, controller)

plt.plot (ts, outputs)

[<matplotlib.lines.Line2D at 0x10cf877£0>]

264 Chapter 4. Simulation

[10]:

Dynamics and Control, Release 0.0.1

139

17 [

laf{

15 f

14

13

12}

11}

10

(=]

We can still simulate different situations easily.

20 40

G0

80 100

outputs = control_simulation_discrete (system=TankSystem (A=2, alpha=10, K=2, V=2,.

SFi=1),

— tau_i:5,
plt.plot (ts,

22

bias=0.5))
outputs) ;

controller=DiscreteController (DeltaT=1,

20+

18

16

14

12}

10
o

20 40

80 100

Kc=-0.5,

4.8. A discrete controller class

265

Dynamics and Control, Release 0.0.1

4.9 Blocksim

tbcontrol.blocksimisasimple library for simulating the kinds of block diagrams you would encounter in a typical
undergraduate control textbook. Let’s start with the most basic example of feedback control.

D—)Gd

: import tbcontrol

tbcontrol.expectversion("0.1.1")

: from tbcontrol import blocksim

Our first job is to define objects representing each of the blocks. A common one is the LTI block

: Gp = blocksim.LTI('Gp', 'u', 'y', 10, [100, 1], 50)

: Gp

]: LTI: u »[Gp 1-> vy

We'll use a PI controller

: Gc = blocksim.PI('Ge', 'e', 'u', 0.1, 50)

: Gec

l: PI: e »[Gc]-» u

Once we have the blocks, we can create a Diagram.

Sums are specified as a dictionary with the keys being the output signal and the values being a tuple containing the input
signals. The leading + is compulsory.

The inputs come next and are specified as functions of time. Blocksim.step () can be used to build a step function.

: diagram = blocksim.Diagram([Gp, Gc],

sums={'e': ('+ysp', '-y')},
inputs={'ysp': blocksim.step () })

: diagram

266 Chapter 4. Simulation

[14]:

Dynamics and Control, Release 0.0.1

LTI: u »[Gp]~ vy
PI: e »[Gc]- u

Blocksim is primarily focused on being able to simulate a diagram. The next step is to create a time vector and do the
simulation.

import numpy

The time vector also specifies the step size for integration. Since blocksim uses Euler integration internally you should
choose a time step which is at least 10 times smaller than the smallest time constant of all the blocks. The timespan is of
course dependent on what you are investigating.

ts = numpy.arange (start=0, stop=1000, step=1)

simulation_results = diagram.simulate (ts, progress=True)

HBox (children=(IntProgress (value=0, max=1000), HTML (value='")))

The result of simulate () is a dictionary containing the simulation results.

import matplotlib.pyplot as plt
$matplotlib inline

for signal, value in simulation_results.items() :
plt.plot (ts, value, label=signal)
plt.legend()

<matplotlib.legend.Legend at 0x1cl19f872b0>

150 1

125 A

100 A

0.75 1

050 1

025 1

0.00

—0.25 A

—0.50 1

4.9. Blocksim 267

[15]:

[16]:

[17]:

[187:

[19]:

Dynamics and Control, Release 0.0.1

4.9.1 Re-using parts of a diagram

Let’s compare the output of a PI and a PID controller on this system. We’ve already got the PI response, which we should

store.

y_pil = simulation_results['y']

Let’s swap out the PI controller for a PID.

Gc_pid = blocksim.PID('Ge', 'e', 'u', 0.1, 50, 25)
diagram.blocks = [Gp, Gc_pid]

simulation_results = diagram.simulate(ts, progress=True)

HBox (children=(IntProgress (value=0, max=1000), HTML (value='")))

: plt.plot(ts, y_pi, label='PI'")

plt.plot (ts, simulation_results['y'], label='PID')
plt.legend()

<matplotlib.legend.Legend at Oxlclall3de68>

— Pl
141 PID
12 A
10 A e ———
08 1
06 -
0.4 -
02 -
00{ —

0 200 400 600 800 1000

We can see that adding the derivative action has improved control.

4.10 Disturbances

We can simulate a more complicated block diagram with a disturbance.

268

Chapter 4. Simulation

[217:

[25]:

Dynamics and Control, Release 0.0.1

Y Y,
5 kK, WA 2 G,
Y,

Km = blocksim.LTI
Gc = blocksim.PI(
Gv = blocksim.LTI
Gp = blocksim.LTI
Gd = blocksim.LTI
Gm = blocksim.LTI

— Gy

('"Km', 'ysp', 'ytildesp',
Kc=8,

leV, Yel, le,
(’GV'I 'p'l 'u'l 1!
("Gp', 'u', 'yu', [
('éd', 'd', 'yd', [
(lel, lyl, lymV, [

blocks =

sums = {'e':

[Km, Gc, Gv,

vyl: ('+yd’,

Gp, Gd, Gm]

('"+ytildesp', '-ym'),

"+yu') }

inputs = {'ysp':

'd': blocksim.step(starttime=50) }

diagram = blocksi

ts = numpy.arange

results = diagram

HBox (children=(In

for name in ('ysp
plt.plot (ts,
plt.legend()

<matplotlib.legend.Legend at Oxlcl9feccf8>

blocksim.step (),

m.Diagram(blocks, sums,

(start=0, stop=100,

.simulate (ts, progress=True)

tProgress (value=0,

l, 'd', vyv):

results[name], label=name)

step=0.05)

max=2000),

HTML (value="")))

4.10. Disturbances

269

[26]:

[27]:

Dynamics and Control, Release 0.0.1

12

10 vy

ER

0.6

0.4

0.2 | T ¥Ep

d

0.0 l - Y
T T T T T T
0 20 40 B0 8O 100

4.11 Algebraic equations

Sometimes it is useful to be able to handle non-linear calculations in block diagrams. This deviates from the strict inter-
pretation of block diagrams but can be useful for instance in calculating the response of a controller with output limits.

import numpy

def limit (t,

Gp
Gc

u)

return numpy.clip(u, 0, 0.2)

blocksim.LTI('Gp', 'ulimited', 'y', 10, [100, 1], 50)
blocksim.PI('Ge', 'e', 'u', 0.1, 50)

limiter = blocksim.AlgebraicEquation('Limiter', 'u', 'ulimited',

diagram = blocksim.Diagram([Gp, Gc, limiter],

sums={'e': ('+ysp', '-y')},
inputs={'ysp': blocksim.step () })

ts = numpy.arange (start=0, stop=1000, step=1)
simulation_results = diagram.simulate (ts)
diagram

LTI: ulimited [Gp]- vy

PI: e »[Gc]-» u

AlgebraicEquation: u -»[Limiter]- ulimited

: plt.plot (ts,
plt.plot (ts,

simulation_results['u']l)
simulation_results['ulimited'])

[<matplotlib.lines.Line2D at Oxlclalé6ad68>]

limit)

270

Chapter 4. Simulation

Dynamics and Control, Release 0.0.1

0225 1
0200 - {l/\
0175 1
0150 1
0125 1
0100 -
0075 1

0.050 1

o 200 400 200 goa 1000

We can see the effect of the limiter clearly in the above figure

4.11. Algebraic equations 271

Dynamics and Control, Release 0.0.1

272 Chapter 4. Simulation

[61]:

[39]:

[78]:

[79]:

[17]:

[21]:

[197:

CHAPTER
FIVE

TEMPERATURE CONTROL LAB (TCLAB)

5.1 FOPDT fit

My tests of my TClab around ¢); = 50 have resulted FOPDT model with 7, = 150's, K}, = 0.38 and § = 15 s

from tclab import runexperiment

steptime=1000
Qbar = 50
deltaQ = 10

def steptest (t, lab):
lab.Ql (Qbar if t < steptime else Qbar + deltaQ)

smatplotlib notebook

experiment = runexperiment (steptest, connected=True,
plot=True, twindow=1000,
time=1000,
speedup=1,

dbfile='"sinetest.db"')

TCLab version 0.4.6dev
NHduino connected on port /dev/cu.wchusbseriall4l0 at 115200 baud.
TCLab Firmware 1.3.0 Arduino Uno.

<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>

TCLab disconnected successfully.

import numpy
from matplotlib import pyplot as plt

$matplotlib inline

h = experiment.historian

from tclab import Historian

273

[20] :

[22]:

[22]:

Dynamics and Control, Release 0.0.1

h = Historian (sources=(('Ql', lambda: [1, 2, 3, 4]), ('Q2', None), ('Tl1', None), ('T2
—', None)), dbfile='sinetest.db')
h.get_sessions ()

[(2, '2018-03-06 18:45:27', 13710),
(12, '2018-03-07 14:55:43', 2001),
(15, '2018-03-07 18:43:39', 7526),
(25, '2018-03-08 05:34:09', 5523),
(27, '2018-03-08 07:10:23"', 4873),
(28, '2018-03-08 12:59:29', 55),
(29, '2018-03-08 13:00:31', 1106),
(30, '2018-03-08 13:02:35', 1001),
(31, '2018-03-08 13:25:17', 2001),
(32, '2018-03-08 14:30:19', 0),
(33, '2018-03-08 14:30:32', 891),
(34, '2018-03-08 14:46:08"', 536),
(35, '2018-03-08 14:55:18', 132),
(36, '2018-03-08 15:02:28"', 2001),
(37, '2018-03-09 04:37:56', 0),
(38, '2018-03-09 04:39:17', 0)]

h.load_session (12)

tau_p = 150

Kp = 0.38

theta = 15

T1_0 = 43

t = numpy.array(h.t)

resp = numpy.maximum(deltaQ*K_p* (1 - numpy.exp(-(t - theta - steptime)/tau_p)), 0) +_

—T1_0

: plt.figure ()

plt.plot(h.t, h.logdict['T1'])

plt.plot (h.t, resp)

plt.ylim(ymin=40)

(40, 48.603)

274 Chapter 5. Temperature Control Lab (TCLab)

Dynamics and Control, Release 0.0.1

0 250 500 750 1000 1250 1500 1750 2000

5.2 TCLab in the frequency domain

: import numpy

$matplotlib inline

: tau_p = 150
Kp = 0.33
theta = 15

omega = numpy.logspace (-3, -2)
s = omega*lj

: G = K_p/(tau_p*s + 1) *numpy.exp (-theta*s)

: import matplotlib.pyplot as plt

Let’s choose 5 logarithmically spaced points around the corner frequency

fregs = numpy.logspace(-2.8, -2, 5)

: def plotfregs(ax):

for freqg in fregs:
ax.axvline (freq)

: def bode (omega, G, gainax=None, phaseax=None, phasecorr=0):

if gainax is None:

fig, (gainax, phaseax) = plt.subplots (2, 1, sharex=True)
gainax.loglog(omega, numpy.abs(G))
angle = numpy.angle (G)
phaseax.semilogx (omega, numpy.unwrap (angle) + phasecorr)
return gainax, phaseax

5.2. TCLab in the frequency domain

275

[10]:

[147]:

[15]:

[15]:

[16]:

[17]:

[18]:

Dynamics and Control, Release 0.0.1

gainax, phaseax = bode (omega, G)
plotfregs (gainax)

Ix107? T

2x107!

—0.5

=1.0

10-3 10-2

5.2.1 Direct frequency domain tests

: Qbar = 50

deltaQ = A = 10

How long does one sine wave take to repeat?

P=27/w
: P = 2*numpy.pi/fregs
We'll do a couple of repeats.
: nperiods = 3
switch_times = numpy.concatenate ([[0], numpy.cumsum(P*nperiods)])
switch_times
array ([0. , 11893.26574888, 19397.409123 , 24132.20349893,

27119.65678502, 29004.61237718])

from tclab import runexperiment, labtime

def send_sine_wave(t, lab):
print (f'\rTime: {t} Last sleep: {labtime.lastsleep} ', end='")
step = numpy.max (numpy.nonzero (switch_times <= t))
lab.Ql1 (Qbar + A*numpy.sin(freqgs[step]l* (t - switch_times[step])))

totaltime = sum(nperiods*P)
totaltime

276 Chapter 5. Temperature Control Lab (TCLab)

[57]:

Dynamics and Control, Release 0.0.1

29004.612377178186

Experiment will take this many hours

totaltime/60/60

8.056836771438386

Looks like we’ll be running it overnight.

$%time

experiment = runexperiment (send_sine_wave, connected=True,
plot=False, twindow=1000,
time=int (totaltime),

speedup=1,
dbfile="sinetest.db")

TCLab version 0.4.6dev
NHduino connected on port /dev/cu.wchusbseriall4l0 at 115200 baud.

TCLab Firmware 1.3.0 Arduino Uno.

0.8694100379943848 TCLab disconnected successfully.

Time:

CPU times:
Wall time:

4872.0 Last sleep:
user 15.5 s,
1h 21min 16s

import tclab

h = tclab.Historian ((

h =

(
(
(
(

Sys:

lQl”
1927,
0Pq 0,
szv’

experiment.historian

h.get_sessions ()

Lz,
(12,
(15,
(25,
(27,
(28r
(29,
(301
(317
(32,
(331
(34,
(35,
(361
(37,
(38,
(391
(40,
(41,
(42,

'2018-03-06 18:45:27",

'2018-03-07
'2018-03-07
'2018-03-08
'2018-03-08
'2018-03-08
'2018-03-08
'2018-03-08
'2018-03-08
'2018-03-08
'2018-03-08
'2018-03-08
'2018-03-08
'2018-03-08
'2018-03-09
'2018-03-09
'2018-03-09
'2018-03-09
'2018-03-09
'2018-03-09

14:
18:
05:
07:
12:
13:
13:
13:
14:
14:
14:
14:
15:
04:
04:
04:
04:
08:
08:

55:
43:
34:
10:
59:
00:

02

46
55

437,
391,
09",
237,
29",
31,

:35°',
25:
30:
30:

177,
197,
327,

:08',
: 18",
02:
37:
39:
45:
46:
22
23:

28",
56",
17,
497,
447,
48",
20",

28 s, total: 43.6 s
lambda: [0, 0, 0, 0]),
None) ,
None) ,
None)), dbfile='sinetest.db')

13710),
2001),
7526),
5523)
4873)
55),
116),
1001),
2001)
0),
891

’

I4

4

5.2. TCLab in the frequency domain 277

[44]:

[45] :

[46]:

Dynamics and Control, Release 0.0.1

import pandas

smatplotlib inline

h = experiment.historian

sine_sessions = [2, 15, 25, 27]

def sinefit (session, freq, Tbar=40, inphase=0, gain=0.4, phase=0):
h.load_session(session)
t = numpy.array(h.t)
Q1 = numpy.array(h.logdict['QO1l'])
Ql_sine = A*numpy.sin(t*freq + inphase)
Tl = numpy.array(h.logdict['T1"'])
Tl_sine = A*gain*numpy.sin(t*freq + inphase + phase)

plt.plot (t, Q1 - Qbar, color='blue', alpha=0.4)
plt.plot(t, Ql_sine, color='blue')

plt.plot(t, Tl - Tbar, color='red', alpha=0.4)
plt.plot (t, Tl_sine, color='red')

plt.ylim(-A, A)
print (f'Gain={gain}, Phase={phase-inphase}"')

sinefit (2, fregs[O], 40, 0, 0.3, 0,)

Gain=0.3, Phase=0

10.0

754

5.0 1

25 1

00 4

-2 5 4

=5.0

-7.5 4

_].{ID T T T T T T T T
o 2000 4000 G000 8000 10000 12000 14000

from ipywidgets import interact

interact (sinefit,
session=sine_sessions,
freg=fregs,
Tbar=(30., 50.),
inphase=(0, 2*numpy.pi),
gain=(0., 1., 0.01),
phase=(-2*numpy.pi, 0),)

interactive (children= (Dropdown (description="'session', options=(2, 15, 25, 27),-
—value=2), Dropdown (description='freq', options=(0.001584893192461114, O.
(continues on next page)

278 Chapter 5. Temperature Control Lab (TCLab)

[48]:

[124]:

[158]:

[158]:

[20] :

Dynamics and Control, Release 0.0.1

(continued from previous page)
—002511886431509582, 0.003981071705534973, 0.00630957344480193, 0.01), wvalue=0.
—001584893192461114), FloatSlider(value=40.0, description='Tbar', max=50.0, min=30.
—0), FloatSlider (value=0.0, description='inphase', max=6.283185307179586), .
—FloatSlider (value=0.4, description='gain', max=1.0, step=0.01), FloatSlider (value=0.
—0, description='phase', max=0.0, min=-6.283185307179586), Output()), _dom_classes=(
— 'widget—-interact',))

<function _ main_ .sinefit>
gains = [0.3, 0.32, 0.25, 0.24, 0.19]
phases = [-0.28, -0.38, -0.58, -0.88, -1.28]

gainax, phaseax = bode (omega, G)
gainax.scatter (fregs, gains, color='red')
phaseax.scatter (fregs, phases, color='red')

<matplotlib.collections.PathCollection at 0x11a430ba8>

[]
3x 107! .

2x107?

-0.5 4

-1.0 A

1073 1

5.2.2 FFT based bode diagram

next_values {'time': 0, 'value': +A}
def random_noise(t, lab):
if t > next_values['time']:
next_values|['time'] += numpy.random.uniform(50, 300)
next_values|['value'] = -A if next_values['value'] == +A else +A
lab.Ql (Qbar + next_values|['value'l])

next_values

{'time': 0, 'value': 10}

smatplotlib notebook

$%time
experiment = runexperiment (random_noise, connected=True,
plot=True, twindow=2000,

(continues on next page)

5.2. TCLab in the frequency domain 279

[181]:

[30]:

[31]:

[32]:

Dynamics and Control, Release 0.0.1

(continued from previous page)
time=8*60*60,
speedup=1,
dbfile='sinetest.db',
)

TCLab version 0.4.6dev
NHduino connected on port /dev/cu.wchusbseriall41l0 at 115200 baud.
TCLab Firmware 1.3.0 Arduino Uno.

<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>

TCLab disconnected successfully.

RuntimeError Traceback (most recent call last)
<timed exec> in ()

~/Documents/Development /TCLab/tclab/experiment.py in (function, .
—connected, plot, twindow, time, dbfile, speedup, synced)
929 mnn
100 with Experiment (connected, plot, twindow, time, dbfile, speedup, synced).
—as experiment:
-—-> 101 for t in experiment.clock() :
102 function(t, experiment.lab)
103 return experiment
~/Documents/Development /TCLab/tclab/experiment.py in (self)
78 else:
79 times = range(self.time)
-——> 80 for t in times:
81 yield t
82 if self.plot:
~/Documents/Development /TCLab/tclab/labtime.py in (period, step, tol, adaptive)
98 'Step size was {} s, but {:.2f} s elapsed '
99 '({:.2f} too long). Consider increasing step.')
-=> 100 raise RuntimeError (message.format (step, elapsed, elapsed-
—step))
101 labtime.sleep(step - (labtime.time () - start) % step)
102 now = labtime.time () - start

RuntimeError: Labtime clock lost synchronization with real time. Step size was 1 s,.
—but 3.22 s elapsed (2.22 too long). Consider increasing step.

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

h = experiment.historian

h.load_session (36)

$matplotlib inline

plt.plot(h.t, h.logdict['T1"'])

280 Chapter 5. Temperature Control Lab (TCLab)

[32]:

[33]:

[72]:

[73]:

[74]:

[74]:

Dynamics and Control, Release 0.0.1

[<matplotlib.lines.Line2D at 0x118ee7a20>]

42.5 A

40.0 A

37.5 1

35.0

32.5 A

30.0

27.5 1

25.0

0 250 500 750 1000 1250 1500 1750 2000
import numpy
startcut = 900

Q1 = numpy.array (h.logdict['Ql'] [startcut:])
Tl = numpy.array(h.logdict['T1'"] [startcut:])

plt.plot (Q1)
plt.plot (T1)

[<matplotlib.lines.Line2D at 0x1176£f1278>]

ol L TN _r,ﬂz

0 200 400 600 800 1000

o
|

= numpy.fft.rfft (Q1 - Qbar)
y = numpy.fft.rfft (T1 - numpy.mean(T1l))

: omegafft = numpy.fft.rfftfreqg(len(Ql), 1)

Gfft = y/u

5.2. TCLab in the frequency domain

281

[160]:

[160]:

Dynamics and Control, Release 0.0.1

ga, pa = bode(omega, G)

bode (omegafft, Gfft, ga, pa, numpy.pi/4
plt.xlim(le-3, 1le-2)

ga.set_ylim(0.01, 1)
pa.set_ylim(—numpy.pi/2, 0)

(-1.5707963267948966, 0)

10°

ll}—l 4

12
0.0

)

\-_\

-1.0 1
_]_5 4
10-3 2x107° 3Ix107%%x107° Gx107° 1072
282 Chapter 5. Temperature Control Lab (TCLab)

CHAPTER
SIX

SEARCH PAGE

e search

283

	Getting Started
	Introduction to Sympy and the Jupyter Notebook for engineering calculations
	A quick tour
	Math in text boxes
	Special symbols in variable names
	SymPy
	Calculus
	Limits
	Approximation
	Solving equations

	Python stuff not done in MPR
	List comprehensions
	Dictionaries
	Tuples
	Tuple expansion

	The for loop in Python
	zip

	lambda

	The Jupyter notebook cheat sheet
	Table of Contents
	Numeric
	Basic plotting functions
	Symbolic manipulation
	Imports
	Working with rational functions and polynomials
	Functions useful for discrete systems

	Equation solving
	Symbolic
	Numeric sympy
	Numeric

	Matrix math
	Symbolic
	Numeric

	Dynamics
	Modelling
	The draining cup problem
	Volume-height relationship
	Dynamic model

	Time domain simulation
	Equation solving tools
	Exact solution using sympy
	Special case: linear systems
	Nonlinear equations
	Numeric root finding
	Downsides of numerical solution

	Differential equations
	Analytic solution
	Numeric solution
	A note about odeint

	The problem with simple math on computers
	Computers use base 2 instead of base 10
	Solutions
	Built-in to Python
	Sympy

	Why isn’t math always done in base 10?
	Forcing rounding of exact representations

	Read simulation input from a file
	Fed Batch Bioreactor
	CSTR system
	Model
	Solve for steady state
	Nonlinear behaviour

	Mixing system
	Steady state calculation
	Flow rates
	Compositions

	Design
	Dynamic simulation

	Linear systems
	Valve equation
	Rewriting in terms of devation variables

	A note about simplification
	Multiple variables

	Laplace transforms in SymPy
	Direct evaluation
	Library function
	What is that θ?
	Reproducing standard transform table
	More complicated inverses

	Convolution and transfer functions
	Numeric convolution

	Visualising complex functions
	One-dimensional functions

	First and second order system Dynamics
	Standard process inputs
	Step
	Laplace transform
	Scaling and translation
	Rectangular pulse
	Arbitrary piecewise constant functions

	Ramp
	Continuous piecewise linear functions
	Arbitrary piecewise linear functions

	First order systems
	Sinusoidal response
	First order
	Second order sinusoidal response
	Amplitude over frequency

	Complex system dynamics
	Random response generator
	Simulation of arbitrary transfer functions
	Convert to ODE and integrate manually
	LTI support in scipy.signal
	Step responses
	Responses to arbitrary inputs
	Manual integration using state space form
	Demonstration for higher order functions
	State space for higher order functions
	Systems in series

	3. Control module

	Simplifying block diagrams
	Approximation
	Taylor approximation
	Padé approximation
	Further exploration

	Approximations based on response matching
	Skogestad’s “Half Rule”

	Multivariable system representations
	Transfer function matrices
	Representing matrices in SymPy
	Representing matrices using the control library

	Conversion to state space
	State space representation
	Converting between state space and transfer function forms
	Scipy.signal
	Control library

	Symbolic conversion
	Analysis

	System identification
	Linear regression
	Create the design matrices
	Pseudoinverse solution
	Dedicated solvers

	Nonlinear regression
	Fitting step responses
	Neural network regression
	Scikit-learn
	Keras

	Frequency domain
	Fourier series
	Step function
	Step response via Frequency response

	What does a sinusoid sound like?
	But signals aren’t pure sinusoids
	Numeric Fourier Transform
	But that sounds terrible

	Frequency response plots
	Bode
	Phase unwrapping
	Nyquist
	With the control library
	Asymptotic Bode diagrams
	Systems with real poles
	Systems with complex poles
	Dead time

	Sampled systems
	Strategies for filtering out noise from a sampled signal
	Pandas

	Moving averages
	Exponentially weighted moving average

	The z-transform
	Definition
	Direct calculation in SymPy
	Transfer functions from difference equations
	Responses and inversion
	Calculation using scipy
	Calculation using the control libary

	Control
	Conventional feedback control
	Instructions
	PID step responses
	PI
	PID
	PD

	First-order system with proportional control
	Offset as function of gain
	Second order system with proportional control

	PID control on TCLab
	Programmatic interaction
	Advanced usage
	Accessing the historian
	More detailed analysis
	Closed loop controlled responses

	Laplace domain analysis of control systems
	Closed loop stability
	Using the control library
	Direct substitution

	Why do we need the Routh Array
	A better way
	Root locus diagrams

	PID controller design, tuning and troubleshooting
	Direct synthesis PID design
	Alternate solution

	Minimal integral measures
	ITAE parameters for FOPDT system
	Interactive version

	Frequency domain analysis of control systems
	Stability in the frequency domain
	Locating poles and zeros of a complex function
	Closed loop stability
	Nyquist stability criterion
	Bode stability criterion

	Advanced control methods
	Dead time reduces control performance
	Smith Predictor

	Discrete control and analysis
	Numeric simulation
	Symbolic calculation
	Discrete PI with ITAE parameters
	Reconstruction
	Discrete responses
	With output limits
	With setpoint tracking

	Dahlin controller
	Discretise the system
	Dahlin Controller
	Continuous response
	Simple discrete simulation: Dahlin controller
	Simple discretisation
	Do discrete transfer function math
	Convert from positive to negative powers of z
	Simple blocksim simulation

	Noise models

	Multivariable control
	Multivariable control
	Closed loop transfer functions for multivariable systems
	Characteristic equation

	Multivariable Stability analysis
	Multivariable pairing (RGA)
	Simulation results

	Eigenvalue problem
	Decoupling
	1. Inverse-based
	2. Zero off-diagonals
	3. Adjugate method

	Model Predictive Control

	Control Practice
	Control valve design

	Simulation
	No delays
	Normal way
	Preallocation

	Dead time
	Lists and interp
	Approximate indexing

	Nonlinear tank system
	PI Control
	Classes
	What is this good for?
	Objects must be “like” things

	Taking off the engine cover
	Objects
	Tank system
	PI Controller
	Generic integration
	Re-using the interface

	A discrete controller class
	Blocksim
	Re-using parts of a diagram

	Disturbances
	Algebraic equations

	Temperature Control Lab (TCLab)
	FOPDT fit
	TCLab in the frequency domain
	Direct frequency domain tests
	FFT based bode diagram

	Search Page

