81. Noise models¶
[1]:
import matplotlib.pyplot as plt
%matplotlib inline
[2]:
import numpy
[7]:
signal = numpy.random.randn(100)
[4]:
plt.plot(signal)
[4]:
[<matplotlib.lines.Line2D at 0x11cbac940>]

[5]:
import scipy.signal
[6]:
result = []
[8]:
previous = 0
[9]:
alpha = 0.95
[10]:
for s in signal:
news = previous*(1-alpha) + alpha*s
previous = news
result.append(news)
[11]:
plt.plot(result)
[11]:
[<matplotlib.lines.Line2D at 0x1c1eb4aa20>]

[13]:
news = 0
[18]:
result = numpy.cumsum(signal)
[19]:
plt.plot(result)
[19]:
[<matplotlib.lines.Line2D at 0x1c1ecd37b8>]

[ ]: